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Abstract— A new RoboCup soccer league is being developed,
focusing on human-robot interaction. In this league each team
consists of both a human player, mounted on a Segway HT
scooter, and a robotic version of the Segway; both human and
robot players must cooperate to score goals. This paper details
the design of our robotic Segway Soccer Brain-Based Device
(SS-BBD). The SS-BBD control system is based on a large scale
neural simulation, whose design is dictated by details from the
published literature on vertebrate neuroanatomy, neurophys-
iology, and psychophysics. The physical device is completely
autonomous, and possesses special manipulators for kicking and
capturing a full-sized soccer ball. The SS-BBD uses visual and
laser rangefinder information to recognize a variety of game
related objects, which enables it to perform actions such as
capturing the ball, kicking the ball to another player, shooting
a goal, and maneuvering safely across the field. The SS-BBD
can act autonomously or obey voice commands from the human
player. This is an unprecedented level of human-robot teamwork
on a soccer field, in that our players are not merely acting
autonomously, but also communicate with each other and support
each other on the field.

I. INTRODUCTION

RoboCup [1] is an organization dedicated to fostering
robotics research by providing a standard problem, robot
soccer. The stated goal is to develop, by 2050, a team of
fully autonomous humanoid robots that can win against the
human world soccer champion team. However, all current
RoboCup leagues involve only robots playing other robots.
A new RoboCup league, Segway Soccer [2], [3], is under
development in which humans and robots interact on the
playing field. We hope that this new league will be as useful
to the field of human-robot interaction as previous RoboCup
leagues have been to the field of multi-agent coordination.

Our Segway soccer playing robot was constructed as a
Brain-Based Device (BBD). A BBD is a class of neurally-
controlled robot, which is based on features of vertebrate neu-
roanatomy and neurophysiology, emphasizing the organism’s
interaction with the environment [4]. A BBD is constrained
by the following design principles:

1) The device needs to engage in a behavioral task.
2) The device’s behavior is guided by a simulated nervous

system having a design reflecting the brain’s architecture
and dynamics.

3) The device needs to be situated in the real world.

The behavior of a BBD arises from the interaction between
the simulated nervous system, the device’s phenotype, and the
environment.

The Segway Soccer Brain-Based Device (SS-BBD) pre-
sented in this paper is a hybrid device, combining a neural
simulation with more traditional control methodologies. It
operates in a game with many rules and constraints, not the
least of which is that it must interact with human players in
a safe and effective manner. The SS-BBD is successful in the
sense that it: 1) can visually recognize objects in a cluttered
natural environment; 2) can perform difficult motor skills; 3)
has novel and effective algorithms for action selectionl; and
4) has competed and been victorious in a series of games with
another Segway Soccer team.

II. SEGWAY SOCCER GAME

Segway Soccer is relatively new, and the rules [3] are still
under development. The object of this league is to have both
human players and robots cooperate and compete with each
other, in a game on an equal footing.

Games may be two-a-side or more, up to 11 on a team,
and half of the team members must be robots1. For safety
reasons, players are not allowed to get closer than one meter
to each other, and the robots must therefore have an advanced
obstacle avoidance and route selection mechanism or they will
frequently be stuck in the corner of the field, prevented from
moving by other players.

As in other RoboCup leagues [1], color markers are used to
help the robots’ object recognition ability: the ball is orange,
the goals have separate colors and each team has its own color
which has to be announced to the opponent team 20 minutes
before the game.

To ensure the cooperation between human and robot players
and to avoid the dominance of humans:

• Dribbling and traveling is not allowed. The player (either
human or robot) who has the possession of the ball may
turn in place, but must not move off the spot. The player
has 30 seconds to pass the ball onwards or possession
turns over to the other team.

1The team presented in this paper consists of one human, one robot.
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Fig. 1. The Segway Soccer devices. On left the modified Segway HT scooter
for the human player, which gives the rider the same active ball-handling and
kicking capabilities as the SS-BBD on the right. (A) active capture devices,
(B) laser rangefinder, (C) pan-tilt unit and camera, (D) kicking assembly, (E)
passive capture ring, (F) voice command module, (G) crash bars.

• No shot on the goal is allowed unless both human and
robot players have touched it since that team last took
possession of the ball. Moreover, to further increase the
robots’ dominance on the field, at the recent 2005 US
Open [1] only robots were allowed to shoot on goal.

• Human players are not allowed to mark (i.e., closely
shadow) robots.

As a consequence of these rules Segway Soccer is a more
cooperative game with fewer scrum-like plays than other
RoboCup leagues. A typical offensive play consists of a series
of passes between teammates in which player[s] without the
ball head towards the goal. When a player close to the goal
receives a pass it shoots on the goal. The defensive team
concentrates on intercepting the opponent’s pass, capturing a
free ball, and on defending territory. By occupying territory,
that area and passage through it are denied to the other side,
due to the one meter rule. This is typically most useful in
preventing the opponents from getting close enough to the
goal to score.

III. THE DEVICES

The SS-BBD (see Fig. 1) is based on the Segway Robotic
Mobility Platform [5], a commercially available robot version
of the Segway Human Transporter (HT). An aluminum chassis
sits on the commercial base, containing a cluster of six
compact Pentium IV PCs and enough battery capacity to
power it for 45 minutes.

The SS-BBD possesses various sensory systems, including
a color camera, a laser rangefinder, and a digital compass.
Banks of short range IR proximity sensors are mounted low
around the device to detect nearby soccer balls. One bank of
IR sensors is mounted on the back above ball height to detect
nearby non-ball obstacles that are outside the sensing arc of
the front-mounted camera and laser rangefinder.

The SS-BBD possesses solenoid actuated devices that en-
able it to handle a soccer ball. A pair of flexible jaw-like

plastic catchers can pinch a ball firmly against the front of
the device, allowing it to rotate in place with a ball. To kick
the ball, the catchers are raised and a second set of solenoids
actuates a kicker plate that delivers thrust to the ball. A passive
device, a ring of flexible plastic suspended from straps, aids
in capturing incoming balls on the sides and back. Balls slip
under the ring and are trapped against the SS-BBD. The low-
mounted IR sensors then detect on which side of the device
the ball is located, and a simple pivot-in-place motion allows
the device to turn until the ball is on its front face, at which
point it captures the ball with the solenoid-driven catchers.

A modified Segway HT scooter for the human teammate
has the same solenoid driven catchers and kicker as the SS-
BBD, and has a similar maximum velocity to the SS-BBD.
Thus both human and robot have roughly comparable physical
capabilities in ball-handling, which helps to prevent the human
player from completely dominating the game.

For more detailed information on the physical design and
function of these devices, please see our ICRA 2006 poster
submission [6] and on-line videos [7].

IV. SIMULATED NERVOUS SYSTEM

The physical device is guided by a hybrid control system
(see Figure 2) consisting of a simulated nervous system and
more traditional mathematical and control algorithms. The
simulated nervous system is based on a simplified model of
vertebrate nervous system. The neural simulation is primarily
responsible for object recognition and sensorimotor control;
the non-neural controllers provide higher level action selection.

A neuronal unit in the SS-BBD is simulated by a mean
firing rate model, where the mean firing rate variable of each
unit corresponds to the average activity of a group of ∼100
real neurons during a time period of ∼30 ms.

Figure 2 describes the overall architecture of the control
system, which can be described as follows. IR sensors, a
firewire camera and a laser rangefinder provide sensory input
for the system. Action Selection is the central module; it
receives input from IR sensors and the neural visual system
(See Figure 3). Action Selection sends direct commands to
some actuators and indirect ones to the SS-BBD’s wheel
through Head and Body movement neuronal areas. The de-
vice’s movement may also be affected by an obstacle detection
and avoidance mechanism.

V. VISION

To ensure effective behavior, robot soccer requires fast,
robust visual information processing to identify objects on the
playing field.

The visual information was provided to the SS-BBD by
a Sony IEEE 1394 camera equipped with a wide angle lens
working at 30 frames per second and 640×480 pixels. The raw
sensory pixel data was immediately separated into luminance
and color channels (YUV colorspace). Visual information is
processed by the neural simulation (see figure 3); the lumi-
nance information feeds into a set of edge detecting neuronal
areas and the color information drives neuronal areas dedicated
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Fig. 2. Control architecture of the SS-BBD. Green: sensors; Cyan: neuronal
areas; Gray: non-neural controller components; Red: actuators. The simulation
has 60000 neuronal units and 1.6 million synapses. See Section IV for details.

to detecting particular game-related colors. Information from
these early visual areas is combined in neuronal areas that
detect game-related objects.

A. Preferred colors

There are five important objects on the field with different
colors or color combinations: our goal, opponent’s goal, ball,
teammate and opponent. The visual system uses six neuronal
color groups, each of them having a preferred color, namely
Red, Green, Blue, Yellow, Pink and Purple (See Figure 3).
To speed up the mainly color-based object recognition, we
designed a tool to easily recognize these preferred colors by
creating a lookup table for each color on the UV color space.
A value in a color table can be regarded as the probability
of a particular UV coordinate belonging to that specific color.
Snapshots from the user interface to create a color lookup table
is presented in Figure 4.

B. Neuronal Visual Areas and Object Recognition

The visual and object recognition nervous system contained
15 neuronal areas. Figure 3 shows a high level diagram
of the system including the various neuronal areas and the
arrangement of the feedforward and recurrent excitatory and
inhibitory synaptic connections. The simulation is based on a
recent model of the primate visual system [8], where the edge
and color filtering neuronal areas correspond roughly to pri-
mary and secondary visual cortices and the object recognition
neuronal areas perform similar functions to inferotemporal and
parietal cortices.

The color and edge groups of the neuronal visual areas are
retinotopically mapped. The activity of each color neuronal
unit is determined by the relevant color lookup table; this
activity denotes the ‘closeness’ of it’s pixel in the image to
the preferred color of the group. Similarly, the activity of a
unit in an edge group is proportional the output of the relevant
edge filter at that pixel.
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Fig. 3. Schematic neural architecture for the visual system and object
detection. RGB images are converted to YUV. The Y (luminance) channel
is Gabor filtered , and the UV domain is color filtered to produce activity
in neuronal areas tuned to specific edges and colors. Each object detection
neuronal area takes a specific conjunction of particular color and edge areas
as its input. Cross-inhibition and self-excitation of object areas improves
recognition. All the connections in the processing stream are retinotopic.
Arrowed line: excitatory connection; Circle-tipped line: inhibitory connection.
Green: sensory inputs; Cyan: neuronal areas.
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Fig. 4. Creating a preferred color lookup table in the UV domain. The
user crops an area of the visual field that consists of only the selected color
(e.g., a red ball). Based on the UV values of the pixels in the cropped area,
a statistical algorithm generates a Gaussian-like two-dimensional probability
surface on the UV space. This surface is saved and used as a lookup table to
generate neuronal activity given a pixel’s UV value.

In the SS-BBD’s neural model, each object the robot had
to recognize on the playing field had its own neuronal area,
namely Ball, Goal, Teammate, Opponent, Opponent’s Goal
areas (See Figure 3). These object groups received their
topographical inputs from one or more color neuronal groups.
Some objects are detected through single colors: for example,
the ball is orange, our goal is purple, and the opponent’s goal is
pink. Teams, however, are denoted by combinations of colors:
our team is purple and yellow on the same color marker. For
these objects, the corresponding neuronal area recognizes con-
junctions of these colors in the nearby topographic locations.
The ball neuronal area is unique in that the ball can also be
recognized by its shape: a conjunction of edges in a particular
configuration.

The object areas had recurrent self-excitatory connections
and some also had inhibitory connections to the other object
areas. Inhibitory connections made the system more robust:



Objects that should not be in the same place in the visual field
have inhibitory connections between their neuronal groups.

In summary, the visual object recognition was based on
color/shape information, tuned self-excitation, and cross in-
hibition between the object groups. All these together made it
possible for the neural simulation to robustly recognize objects
in real-time under a variety of lighting conditions.

VI. HEAD-BODY OBJECT TRACKING: CONNECTION OF
VISUAL AND MOTOR NEURONAL AREAS

The target tracking behavior of the SS-BBD is analogous
to humans’ [9], [10]: a fast camera saccade foveates the target
object and then the slower body turns to follow while the
camera tracks the object smoothly.

Both the apparent retinal position and velocity of the
target object are used to generate camera pan-tilt position
commands, which in turn generate wheel velocity commands.
Anticipated retinal position (function of the target object’s
position and velocity) generates retinotopic activity in neuronal
areas projecting to motor areas driving the pan-tilt unit. For
example, if the object is right of center moving rightwards,
then there is more activity on the right side of the pan motor
area, which drives the pan unit rightwards. Similarly, up-down
displacement of neuronal activity drives the tilt motor.

The current pan-tilt position is transformed into neural
activity that is topographic, with respect to body centered
coordinates, and is projected to body movement areas. For
example, when the camera is pointed to the right, there is
more activity on the right side of the body rotation area,
which causes the body to turn rightwards. Similarly, the tilt
position controls forward speed: a higher head position means
the object is far and speed is high, a lower head position means
the object is close and speed is slow.

The total system produces a cascade of neuronal activity
that comes from visual areas to the motor areas, which in
turn creates a change in behavior and visual input. The design
of this architecture ensures that the camera will tend to lead
a moving object rather than lag it, and the body motion
will follow the head with a smooth trajectory. The different
maximum speeds of camera and body motion prevent tracking
behavior from oscillating.

VII. ACTION SELECTION AND MOTOR COMMANDS

The non-neural elements of the controller are organized on
two levels: behaviors and plays.

Behaviors are atomic actions that the device undertakes,
such as searching for an object, or kicking the ball. Each
behavior is a separate controller that sends commands to the
motor neuronal areas independently of the other behaviors.
Only one behavior can be active at any one time. A behavior
may take input directly from the sensors or input pre-processed
from the sensory neuronal areas. A play is composed of
a sequence of behaviors, and the sensory conditions that
will cause the controller to transition to each new behavior.
All plays draw on the same set of possible behaviors, but
recombine them in various way to produce different results.

Finally, a mechanism exists that allows the human player
to override the normal autonomous execution of plays by the
SS-BBD. A voice command system is installed on the human
player’s Segway Scooter that wirelessly relays a command to
the SS-BBD causing it to execute a new play requested by the
human player.

A. Behaviors

The behaviors used by the SS-BBD are:
Find Object: Pan the camera and turn the SS-BBD in place,

until a target object is visually recognized.
Track Object: Approach a target object while keeping it

foveated using both the pan-tilt unit and the wheels of
the SS-BBD.

Capture Ball: Perform the final manuevering to get close
to the ball and lowers the catchers to trap it.

Kick: Lift the catchers away from the ball and fire the
kicking solenoids.

The Kick and Capture Ball behaviors are simple, precisely
tuned controllers. Capture Ball is a proportional controller that
uses feedback from both the neuronal visual ball area and non-
neural signals direct from the IR to guide the SS-BBD to the
correct point to capture the ball, at which point is actuates
the solenoids. Kick is an open-loop sequence of commands to
catcher solenoids, kicker solenoids, and the wheels that results
in a straight, powerful kick travelling about 1.5 m/s. Both
behaviors have some error correction logic that can correct
or re-start the process if the ball is not successfully kicked or
captured.

The behaviors Find Object and Track Object can be set to
work on any object that is detected by the neural simulation:
soccer balls, either goal on the field, a teammate, or an
opponent. Find Object has two different algorithms depending
on the circumstances of its execution: (1) if called during a
momentary loss of an object that had been previously tracked,
Find Object steers the search in the same direction in which
the object was last observed to travel, thus following the path
of an object that has been momentarily occluded by some
obstacle; (2) if called for a brand new search, Find Object
searches in a random direction for the target object. Since the
pan-tilt unit tracks faster than the device’s body can turn, it
first performs a head-check for the object to the limits of the
pan in one direction. If the object is not found, the camera
goes to the pan-limit on the other side and the body turns to
follow the head.

The Track Object behavior is based on psychophysical data
about eye-head-body coordination, and is implemented using
neural mechanisms, as discussed in section VI. Track Object
will cause the SS-BBD to move forward while turning towards
the target when it is not in possession of the ball (e.g., while
chasing a loose ball). If it is in possession of the ball (e.g.,
when lining up a shot on the goal) then it rotates in place
without forward motion.

When moving forward, Track Object uses an obstacle
avoidance and route selection algorithm, based on human
behavior, that balances target-seeking with obstacle-avoiding.



(a) Too close! Backup. . . (b) find the goal and track towards
it. . .

(c) avoid smoothly around the
moving opponents. . .

(d) and wait for the pass in front
of the goal.

Fig. 5. An example sequence of SS-BBD avoidance during the Run Downfield play in a cluttered, dynamic environment. The SS-BBD and its teammate
wear yellow-purple-yellow markers, and the opponents wear fluorescent green. The motion of the SS-BBD in the near future is indicated by the yellow arrow.
The yellow circle indicates the SS-BBD is stationary.

Human locomotion to a goal in the presence of obstacles can
be described and predicted by a simple dynamical model [11].
The model is a spring-mass-damper type equation controlling
the angular velocity of the agent given the distances and
headings to the target object and the obstacles. Track Object
implements the same dynamical model. Obstacle information
comes from a laser rangefinder; an obstacle is defined as any
set of adjacent laser readings subtending at least 3◦ of arc
that are all less than two meters from the rangefinder. Target
information is extracted from the neuronal activity of the target
object area and the pan position areas; the center of activity
in the object area produces a vision-centered coordinate which
is added to the center of activity of the pan position area to
produce a body-centered coordinate.

Since this device operates in a real environment with
stringent safety requirements, the velocity of the SS-BBD
is subject to additional constraints. The normal maximum
forward speed of the device is 3.5 m/s, but this is reduced
proportional to the average distance of all obstacles detected by
the laser rangefinder. This increases safety by reducing speed
in cluttered environments. Additional safety is provided by
backing up slowly if an obstacle is less than 1 m away in the
front arc, as long as there are no obstacles within 1 m in the
back arc (as determined by rear IR sensors).

Examples of typical avoidance paths using these algorithms
can be seen in figure 5 and in on-line videos [7].

B. Plays

Plays are a higher level of control than behaviors. A play is
a state machine where the state is either a particular behavior
or another play. The set of conditional transitions between the
states determine the flow of control that defines the play.

Most of the plays used on the SS-BBD are at the level
of very simple actions on the field, such as ‘chase the ball’,
or ‘pass to the teammate’, or ‘run downfield until near the
goal’. Figure 6 shows state automata that represent the basic
plays Chase, Pass, and Run Downfield. Other basic plays in
the repertoire are Shoot (which is identical to pass, except the
target object is the opponent’s goal), Run Upfield (identical to
Run Downfield, except for the target), Follow the Teammate,
Mark the Opponent, Block our Goal, and Wait (stay in place,
tracking the ball, but not moving forward until the ball is near

enough to capture).
The SS-BBD also possesses a number of plays that are more

complicated, composed of the basic plays. One such offensive
maneuver is designed to move the ball down the field. The
flow of the play goes from Chase to Pass to Run Downfield.
When Run Downfield is complete it returns to Chase and the
sequence repeats. Each sub-play in the sequence transitions to
the next sub-play when it has finished its normal execution.

C. Voice Commands

At any point the flow of control can be interrupted by a
voice command from the human teammate. The Segway HT
scooter ridden by the human has a voice recognition board
(Voice Extremetm Toolkit, Sensory, Inc., Santa Clarita, CA)
connected to a microphone that can recognize about a dozen
discrete short phrases after being trained to a particular voice.
These phrases are code names for various plays in the SS-
BBD’s repertoire, and for each such phrase a corresponding
command is transmitted wirelessly to the SS-BBD, which
upon receiving the command immediately executes the correct
play.

VIII. SEGWAY SOCCER EXHIBITION

At the 2005 RoboCup American Open in Atlanta, Georgia,
a set of Segway Soccer demonstration games were held to
promote this new RoboCup league. The demonstration was a
great success; both The Neurosciences Institute and Carnegie
Mellon University fielded [12] two-a-side teams. Several more
institutions are presently in the process of developing their own
teams. Both of the teams on the field in Atlanta were able
to demonstrate safe human-robot interaction in a competitive
situation. Both teams showed that they could take control
of the ball, move it around the field through human-robot
cooperation, and score. However, we should like to modestly
point out that we won all five demonstration games.

IX. CONCLUSION

The SS-BBD is unique among neurally-controlled soccer
robots in both the biological detail underlying its design and
in the complexity of the neural simulation. It is unique among
BBDs in the complexity of its behavioral repertoire and in the
speed of its action.
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Fig. 6. State machines showing how three basic plays are composed of behaviors and conditional transitions between them. When Play Select is reached
another play is chosen and executed.

Although mimicking biology has in recent years become
a well-accepted approach to building robotic systems (see,
e.g. [13], [14]), we are particularly interested in behavioral
control at the level of systems neuroscience. Large-scale neural
simulations of vertebrate neuroanatomy and neurophysiology
are used to test hypotheses of how real nervous systems
function (e.g. [4], [15]–[20]). We feel it is important that
such neural simulations are embodied in a real-world device
interacting with a rich environment, rather than operating
in abstract simulation worlds. Much of the complexity of
animal behavior results from the interactions between the
nervous system, the rest of the body, and the environment. And
although our primary focus is on biological modelling, we also
feel that the Brain-Based Device approach offers insights for
designing robots that need to survive and accomplish tasks in
dynamic environments with robustness and adaptability that is
difficult to obtain using traditional engineering and artificial
intelligence methods. We applied the BBD method to the
design of this Segway Soccer robot, and produced a device
that is capable of interacting with humans both cooperatively
and competitively, but most importantly, safely.
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