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Introduzione

In un crescente numero di casi si fa ricorso a componenti software sviluppati

da terze parti (COTS - Commercial Off-The-Shelf) anche per la realizzazione

di sistemi critici per tempo ed affidabilità, per motivi di costo e di tempo.

La necessità di rientrare nei vincoli di time-to-market, ossia di offrire sul

mercato una soluzione prima dei concorrenti per acquisire un vantaggio, con-

trasta tuttavia con i lunghi tempi richiesti per sviluppare e collaudare un

prodotto garantendo al contempo elevati livelli di qualità e di affidabilità.

In particolare, sistemi operativi COTS non espressamente realizzati per ope-

rare in contesti critici sono presi in considerazione in tali casi; un esempio

di questi sono i sistemi operativi open source, alla cui categoria appartiene

Linux, il quale è stato ed è oggi impiegato per missioni spaziali, per il con-

trollo del traffico aereo e ferroviario, per applicazioni bancarie, nei quali i

malfunzionamenti rappresentano una minaccia all’incolumità di persone e

cose, o possono comportare ingenti danni economici. In particolare, i guasti

del software (nella accezione, ormai comune, di bug) rappresentano attual-

mente la maggiore causa dei fallimenti dei sistemi informatici.

Tipicamente i sistemi operativi COTS offrono dei meccanismi molto limi-

tati per la rilevazione e la tolleranza dei fallimenti, ed inoltre essi non sono

quantitativamente caratterizzati dal punto di vista della loro affidabilità. Gli

approcci esistenti per garantire la affidabilità dei sistemi operativi (si veda

il capitolo 1) si basano su una opportuna progettazione ex-novo (per esem-

1



Introduzione

pio, i sistemi a microkernel quali Minix e QNX), oppure consentono la sola

valutazione dei sistemi esistenti (ad esempio le tecniche come la Field Fail-

ure Data Analysis, Robustness Testing e Dependability Benchmarking), ma

non permettono di incrementare l’affidabilità di sistemi operativi COTS già

esistenti, che rimane ad oggi un problema ancora irrisolto. In tal senso, il

seguente lavoro di tesi si propone di:

1. Valutare la capacità di rilevazione dei fallimenti del sistema operativo

Linux (in termini di latenza e di copertura, intesa come probabilità di

effettiva rilevazione di un guasto) utilizzando gli approcci esistenti per

la valutazione della affidabilità di sistemi basati su componenti COTS;

allo scopo, una specifica di dependability benchmark è stata formulata

ed implementata (attraverso gli strumenti messi a disposizione dal siste-

ma, e descritti nel capitolo 2). Il capitolo 3 discute approfonditamente

gli aspetti legati alla valutazione dei sistemi attraverso l’introduzione

artificiale di guasti, quali ad esempio la scelta dei guasti stessi, la quale

è indispensabile per trarre dei risultati realistici sul comportamento che

avrà il sistema in presenza di fallimenti.

2. Studiare una possibile tecnica per incrementare la capacità di rile-

vazione dei fallimenti; l’approccio considerato è basato sul monitorag-

gio on-line (ossia durante l’esecuzione) di grandezze significative che

caratterizzino l’esecuzione del sistema (ad esempio, indici sintetici delle

performance quali il numero medio per unità di tempo di operazioni

elaborate dai driver dei dispositivi hardware), che permettano di com-

prendere se si è verificato un fallimento. Nel capitolo 4 il problema è

analizzato quantitativamente, sulla base di osservazioni sperimentali,

introducendo un algoritmo per effettuare la rilevazione.

3. Valutare sperimentalmente l’efficacia della tecnica di rilevazione pro-

posta, rispetto ad una applicazione ed ad un modello dei fallimenti

rappresentativo di contesti critici (si veda il capitolo 5).

Una efficace rilevazione dei fallimenti è mirata a consentire eventuali in-

terventi sul sistema per recuperare un adeguato livello di corretto funziona-

mento, o almeno per limitare le conseguenze di un fallimento, in modo da

2



Introduzione

incrementare l’affidabilità del sistema in oggetto. Un tema di ricerca attual-

mente rivolto in questa direzione è quello della diagnosi del software, che

riguarda lo studio di tecniche per risalire alle cause di un fallimento di un

sistema complesso durante la sua esecuzione, per poter predisporre il miglior

tipo di trattamento possibile per il problema verificatosi; a questo scopo è

indispensabile poter rilevare in maniera tempestiva e corretta la presenza di

un fallimento, e fornire un supporto per una eventuale diagnosi dello stesso,

che rappresentano i principali obiettivi di questo lavoro di tesi.

3



CHAPTER 1

Dependability of Operating Systems

Most production software bugs are soft: they go
away when you look at them.

Jim Gray

1.1 Introduction

Nowadays, dependability is a big concern in computer systems engineering;

in particular, software dependability is an important aspect of a complex

system. Twenty years ago engineers realized that hardware was no more the

main source of systems failures [SCK04] [Gra86]; instead, software became

the prominent cause of system outages and malfunctioning, combined with

environmental conditions and operator errors. The main reason is software

complexity: modern systems have to fulfil many functional requirements, so

they increased in size and scale; moreover, they were increasingly subjected

to the time-to-market constraint that reduced design and testing efforts. This

fact led to adoption of Commercial Off-The-Shelf (COTS) components, i.e.

ready-to-use software that can integrated in a bigger system, in order to

minimize its production cost and time.

4



1. Dependability of Operating Systems

Figure 1.1: Temporal trends for computer systems: there was a growth in com-
plexity, integration, number and type of error sources; user basis also grew, but its
sophistication and training decreased.

Today COTS components are essential for any non-trivial software sys-

tem; they range from operating systems (OS), compilers, middleware, virtual

machines, web servers, to many kind of libraries and applications. COTS-

based design introduces many issues for the design of dependable systems,

because both their behavior in presence of faults and consequences of their

interactions are unknown. Operating systems (to which we will refer in this

document) are perhaps the most critical COTS components: they have to

manage a broad spectrum of hardware components, and provide fundamental

facilities to user applications like memory and storage management, schedul-

ing, communication, networking. Moreover, their reliability affects the over-

all system’s dependability attributes, therefore their characterization in re-

spect of faults is prominent in the design of COTS-based systems. A way

to characterize COTS components dependability is needed, that has to be

efficient in respect of time and cost, unbiased, and quantitative.

5



1. Dependability of Operating Systems

1.2 Software Dependability

Software faults are a more recent, and elusive, class of failure sources for com-

puter systems than hardware faults. While hardware faults are well coped

by engineering practices in design and manufacturing, more work has to be

made on software dependability; the former are commonly ”physical” faults

(e.g. an hardware component that wears out, or a broken solder), the latter

instead are ”human” faults (e.g. a mistake in the source code of a program, or

in a system configuration file), i.e. they are introduced in the system during

the development phase of its lifecycle [LRAL04]. Runtime mechanisms and

architectures for achieving software fault tolerance where introduced, such

as N-Version Programming, Recovery Blocks, and N-Self-Checking [Lyu95];

other approaches for fault prevention, removal and forecasting will be intro-

duced in the following sections.

Classic software engineering practices like testing are not sufficient for

fault-free software releases. Gray’s hyphotesis [Gra86] states that most soft-

ware faults are transient (Heisenbugs), i.e. their activation (and follow-

ing manifestation) is non-deterministic because of software complexity: re-

member that in COTS-based layered software complex interactions between

components and the environment take place, leading in occasional and non-

reproducible failures, such as race conditions, deadlocks, and so on.

Transient faults are better described by a pair of attributes: defect (the

meaning of the error in the source code, e.g. a wrong arithmetic operation,

or an incorrectly assigned value) and trigger (the condition that allows a

defect to manifest itself). Orthogonal Defect Classification (ODC) [CBC+92]

[Lyu96] is an affordable methodology that describes how to classify, by defect

and trigger, software faults found during the development and testing phases,

in order to improve the development and testing processes themselves (e.g. by

focusing tests in a particular phase of software lifecycle) and produce reliable

software. The ODC is commonly employed in several works on dependability

to describe and classify software defects (e.g. studies on the field, fault

injection methodologies). The choice of the classification categories should

satisfy several conditions, in order to relate the defects to the development

process phases (to produce a feedback for developers) and to make the classes

6
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disjoint and exhaustive at the same time (to keep the classification simple

and unambiguous for developers). An allowed set of classes is described in

table 1.1; other sets for defect types and triggers are reported in § 1.3.

1.3 Defects in Operating Systems

In this work, we consider dependability assessment and improvement of op-

erating systems. In the past, several papers investigated software defects and

their impact on operating systems’ dependability, by analyzing data collected

during testing and operational phases. [LI93] presents a measurement-based

study of the Tandem GUARDIAN90 operating system; it analyzed software

failures reports from all customer sites, together with actions taken by Tan-

dem analysts in diagnosing and fixing the problems. The propagation and the

effects of software faults on the system state where studied: faults are classi-

fied by the underlying causes (the design or coding fault in the source code),

the first error after their activation (the immediate effect on the system

state), their propagation characteristics (the error may propagate through

the current task, across tasks or does not propagate at all), error latency

(the time elapsed between activation and detection), and the detection mech-

anism (e.g. an exception triggered by an address violation, or an internal

check). Moreover, an evaluation of software fault tolerance is given (Tan-

dem’s operating system implemented a process pair mechanism in which a

failed process is replaced by a backup process on a different processor).

Software faults were the main failure cause (179 out of 200 reports). Fault

causes where grouped in orthogonal categories, e.g. computation error, miss-

ing operation, and so on (see also [CBC+92]); the most reported cause was

”unexpected situation“, that is cases in which potential operational situations

were not considered by designers and the operating system can not handle

them (e.g. race/timing problems, unexpected machine state or operational

scenarios). Those faults were recognized mostly in more mature versions of

the operating system or its components, instead new components are mostly

affected by simpler fault causes; those results support the hypothesis of the

presence of transient faults (Heisenbugs) in large systems, i.e. faults trig-

gered by complex environmental conditions that are difficult to reproduce

7



1. Dependability of Operating Systems

Table 1.1: General defect types adopted for Orthogonal Defect Classification
(ODC).

Defect type Description

Algorithm Efficiency or correctness problems that af-

fect the task; fixed by reimplementing an

algorithm or a data structure, without de-

sign changes

Assignment A value is assigned incorrectly to a vari-

able, or it is not assigned at all; affects

a few lines (e.g. data structure initializa-

tion)

Checking Missing or incorrect validation of param-

eters or data before their use (e.g. condi-

tional statements)

Function An error that affects an important func-

tionality or feature of the system or a com-

ponent; requires a formal design change

and affects a sizeable amount of code

Interface Communication problems between users,

modules, components or device drivers

Timing/Serialization Missing or incorrect management of

shared and real time resources

Build/Package/Merge Defects due to mistakes in library systems,

management of changes or version control

Documentation Defects in publications and maintenance

notes

8



1. Dependability of Operating Systems

and debug. The high tolerance to software faults (82% of reported faults)

is motivated by this behavior: the backup process has a different execution

environment than the faulty process, in which software faults are not exposed

to the same (transient) occurrences of random events, concurrent operations

or memory state.

The error propagation is then discussed; reported faults have mostly a

short error latency (the error was detected before the task that caused the

first error was completed), and were quickly detected (the use of redundant

data structures and consistency checks led to detection on the first access or

by the first task that accessed an error in the memory state). Nevertheless,

several faults presented a significant error latency, and they propagated across

tasks (e.g. corruption of system global data or processes’ private space): it

was observed that errors sharing the same fault cause produced very different

symptoms in the presence of depth error propagation. The early detection

of the presence of a problem is recognized as a key requisite to reduce the

variety of the symptoms of software failures and to simplify the automatic

diagnosis of known problems, i.e. to identify the root cause of a failure and

allow online recovery.

Another paper describing field failures in operating systems is [SC91]:

software defects reported from an IBM operating system are classified by

error type, trigger, symptoms and impact on the customer. The paper em-

phasizes overlay errors (i.e. defects leading to overlapping and corruption

of memory areas) over the rest (regular errors): it is shown they have the

highest impact, in terms of availability, perceived severity, and pervasiveness

across the customer base. Tables 1.2 and 1.3 enumerate orthogonal categories

in which reports were fit; checkmarks indicate defect types that caused over-

lays. Table 1.4 shows a classification for errors caused by software defects

for the Tandem GUARDIAN90 operating system (proposed by [LI93] and

[CC96]).

The most frequent overlay errors were allocation management, copying

overrun and pointer management. It was possible to discover the typical char-

acteristics of an overlay error: the majority of overlays corrupted a memory

area no longer than 100 bytes, and they were close to the intended correct

addresses; this information can be exploited both by recovery system design-

9
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Table 1.2: Defect types characterizing software defects of an IBM operating sys-
tem [SC91]. Overlay-prone defects are those responsible of overlaps of memory
areas, and they are a major part of the total.

Defect type Description Overlay-like

Allocation management A region of memory is still

accessed after deallocation

X

Copying Overrun Overwriting beyond the end

of a buffer

X

Pointer Management Address corruption X

Register Reused Overwriting of processor

registers

X

Type Mismatch Wrong implicit assumptions

about a message format or

structure

X

Unitialized Pointer Address not initialized X

Undefined State The system goes an unan-

ticipated state

X

Unknown Overlay error not classifi-

able

X

Data Error Algorithmic error

PTF Compilation Error in the bug-fixes distri-

bution

Sequence Error Wrong order in messages or

operations

Statement Logic Omission or disorder of

statements

Synchronization Error in locking or synchro-

nization code

X

Deadlock Tasks wait indefinitely be-

cause of resource locking

Unclassified Not categorized

10
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Table 1.3: Defect triggers characterizing software defects of an IBM operating
system [SC91].

Defect trigger Description

Boundary Conditions Limit execution conditions: un-

usual parameters, hardware or

system configuration, workload

Bug Fixes Fixing of earlier errors

Client Code User applications running in pro-

tected mode

Recovery/Error Handling Execution of a recovery routine

Timing Unanticipated sequence of events

Unknown Not determined

ers (e.g. to bring off-line corrupted regions of memory before failures) and

fault injection experiments. Whenever an overlay corrupts large and unre-

lated memory areas, this error is more prone to propagation and leads to

severe failures.

Regular error types were concurrency-related, such as synchronization,

sequence error, and undefined state; they often appeared in network and de-

vice protocols, and caused deadlock conditions and non-consistencies in the

current state; their most frequent trigger was timing, e.g. untested inter-

leaving of events. Surprisingly, boundary conditions triggered the majority

of faults (both overlay and regular); again, unexpected conditions continue

to arise once the software is released (e.g. software and hardware configura-

tions, unusual input parameters, workload), therefore more intensive testing

activities are needed to identify such problems. Recovery code is accounted

as another frequent trigger, because it is difficult to test. It is also shown

that bug-fixes themselves contained faults, often belonging to the Interface

ODC category (e.g. type mismatch).

In [IR85], the relationship between software failures of the operating sys-

tem and system workload is examined. It is shown that the operating system

reliability is influenced by the type and nature of system activity: the analysis

11
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Table 1.4: Error categories for an IBM operating system [CC96].

Error type Description Subtypes

Single address error Incorrect ad-

dress word

Control block address;

storage pointer; mod-

ule address; linking of

data structures; regis-

ter

Single non-address error Incorrect non-

address data

Value; parameter;

flag; length; lock;

index; name

Multiple errors Combination of

single errors or

related to a data

structure

Values; parameters;

address and some-

thing else; flag and

something else; data

structure; random

Control errors Memory not

affected, or non-

deterministic

corruption

Program manage-

ment; storage man-

agement; serialization;

device management;

user I/O; complex

12
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of field crash failures and the workload prior to the occurrence of the failures

points out that the incremental risk of a software failure (the ”hazard” as

function of the workload level) increases exponentially with increasing work-

load; it is emphasized that the failure rate is not correlated with the total

CPU usage (at its peak for the most of the time), but more complex factors

contribute to failure manifestations. For the analyzed system, the leading

workload variables were the operating system overhead, the paging rate and

the average number of starting I/O operations per second, that represent

the amount of interactive processing. The causes of such dependency were

accounted to:

• the I/O activity, because an high number of exceptional I/O problems

led to error handling failures;

• latent transient defects, because periods of stress or rare workload pat-

terns lead to the execution of unused code, thus uncovering and acti-

vating more faults;

• the violation of space or timing constraints, because critical sequences

of events were produced under extreme conditions only.

In [CC96], the data reported in [LI93] and [SC91] is discussed; the similar-

ity between the statistical distributions of the error categories is emphasized

(each error category has about the same occurrence probability in both the

examined systems), giving a flavour of generality to the results; then the data

is reused for injection of errors representative of software faults observed on

the field.

1.4 Dependability evaluation

1.4.1 Experimental and analytical techniques

In order to build safety or business critical systems, appropriate techniques

are required to make dependable design choices, to evaluate existing COTS

components to integrate, and to assess dependability attributes of the final

13



1. Dependability of Operating Systems

system; those techniques can be model-based or measurement-based, and are

both applicable in different phases of the system life-cycle.

In model-based techniques, a formal analytical representation of the sys-

tem is examined; examples of such models are reliability blocks, fault trees,

and state-space models (e.g. Markov chains, Petri nets). Analytical models

were mainly adopted in reliable hardware design, rather than in software,

because of the explosion of model’s complexity (e.g. the number of states

representative of the behavior of the system), and different approaches were

proposed for hierarchical specification of models for large component-made

systems. Nevertheless, analytical models were successfully employed in de-

sign of critical software systems.

Strengths of such models lie in their support for theorem proving: after a

system is modeled, an evaluation of its properties (e.g. liveness, safety) can

be made by automatic tools. Moreover, dependability measures (e.g. avail-

ability, reliability) can be calculated: a model contains several parameters

represented by stochastic processes (e.g. the probability that a transition

between states is made, or that an event occurs), from which aggregated

measures are derived. Modelling is applied both in early design phase (in

order to choose between different fault-tolerant architectures) and prototi-

pal and tuning phases: indeed, measurements from a running system are

collected and elaborated in order to define numerical parameters of an an-

alytical model; these measurements might come from an on-line production

system (a previous release of the same system, or a system from the same

family of products), or a prototipal version of the designed system.

In the case of production systems, on-line monitoring and data elabo-

ration is conducted according to Field Failure Data Analysis (FFDA) tech-

niques [XKI99] [SKS02] [SK05]: such information has to be collected in a

large period of time (an order of magnitude of months, or even years) to

obtain significant results, because dependable systems seldom fail. Informa-

tion sources include standard system log facilities and dedicated monitoring

probes. Field data truly reflects the behavior of the observed system, be-

cause they are collected in the real environment and inputs for which the

system is conceived. Insights into classes of failures (with perceived severity)

and their temporal distributions can be gained, and fault-tolerance mecha-
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Figure 1.2: Logical interactions between analytical and experimental evaluation
techniques. A formal model can lead to definition of experiments, and collected
results can feed numerical parameters of a model.

nism can be evaluated: for example, the most common failure modes can be

discovered, and error propagation in distributed systems can be observed by

error correlation in different nodes.

Because of the large time needed, a FFDA campaign is more often used

for long-term evaluation and tuning of an existing system than for designing

a new one. Fault injection based experiments are conducted in order to

shorten required time [ACC+91], by artificial insertion of faults in a real

system. Fault injection can be conducted during the validation of a system,

or to assess dependability of existent (COTS) components; fault injection

can also be simulated in a model (e.g. in computer-aided circuit design).

Fault injection aims to:

• Study fault activation effects and their propagation in the system;

• Evaluate and improve fault tolerance mechanisms effectiveness (cover-

age, i.e. the probability of detecting an existing error, see [LRAL04]),

that is fault forecasting and removal of fault tolerance deficiencies.

Both hardware and software faults can be injected; hardware faults can
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be simulated by injecting software faults that represent them (e.g. bit flips),

namely software implemented fault injection (SWIFI). Software faults (i.e.

defects in the source code) can be injected (or their activation can be emu-

lated) by:

• Modifications in the original source code (mutation testing);

• Corruption of the memory contents [GKI04];

• Modifications in the executable code, i.e. mutation of machine-level

code patterns with instructions representing high-level software faults

[DM04] [DM02];

• Corruption of function parameters at API or driver level by bit-flip or

selective substitution [AAF04] [KJA+04] [JAC+02].

A fault injection experiment is defined as a test sequence, where inputs

belong to a set of injectable faults F and a set of activation profiles A (i.e.

the workload), and the outputs consist of a set of readouts R collected from

the system and a set of measures M derived from the analysis. Experiments

type (a point in the F ×A space) and number (limited because of time con-

straints) should be chosen with care, in order to produce non-biased results

and extend them to the overall system (both tested and untested parts). A

set of experiments should be designed accounting of:

• Representativity of the activation profile;

• Actual activation of injected faults;

• Probability of occurrence of injected faults in the system.

An operational profile, i.e. a statistical description of system usage,

should be obtained in order to submit a representative activation profile

[MA89] [Mus93]. If an operational profile is not available, the risk of bias

can be compensated by submitting several activation profiles irrespective of

injected faults and injection time.

In order to shorten experiments, [CC96] proposed an approach for inject-

ing errors instead of faults, avoiding unactivated injection experiments and
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delays between fault injections and activations; the methodology is based on

field data, and guarantees that injected errors only emulate software faults

and reflect location and type of faults occurred in real systems. Moreover,

the adoption of software engineering testing techniques is suggested to ensure

the execution of paths in the code in which (emulated) faults are injected.

1.4.2 Robustness Testing

Robustness is defined as the degree to which a system operates correctly

in the presence of exceptional inputs or stressful environmental conditions.

Robustness testing is aimed to evaluate the ability of a component to resist

and react to exceptional and erroneous inputs; for operating systems, these

can be viewed as external faults coming from the system calls, the driver

interface or from the hardware layer directly.

Robustness testing was introduced as an automatic approach for valida-

tion of exception handling and error notification mechanisms of a system.

This approach does not require any in-depth knowledge of the system in

hand (which represents a ”black-box”), its source code or a behavioral speci-

fication, but only its interfaces description; for this reason, robustness testing

is valuable for COTS components evaluation. Quantitative measures can be

assessed for an OS (and its workload) about its behavior and performances

in the presence of faults in external components. These experiments aim to

discover robustness failures of the target component, that is unexpected (but

yet possible) inputs that are not correctly managed; it is worth noting that

robustness failures do not necessarily correspond to software faults in the con-

sidered component (e.g. the occurrence of a crashing input is not considered

by the component specification and never used, ever if external components

are faulty), but they should be considered as potential vulnerabilities.

An example of tool for automated robustness testing is Ballista [DKG99]:

it can generate test cases for system calls of POSIX compliant systems, based

on their signatures; malformed invocations are created by combination of

input values from a common knowledge base, that contains ”critical” values

for each data type (e.g. the NULL value for a pointer in the C language).

Tests can be extended include non-standard and user-defined data types.
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Figure 1.3 shows results from robustness testing of different releases of

several operating systems. The robustness failure rate (the percentage of

non-properly handled erroneous inputs) is one of possible measures that can

be obtained; results can be interpreted after classifying robustness failures by

the relative importance attributed to different observed behaviors (e.g. work-

load abort, silent failure, and so on). The robustness failure rate typically

decreases between releases if upgrades incorporate reliability improvements,

and increases if new features are introduced without sufficient testing.

Figure 1.3: Results of robustness testing at the system call interface for 15 POSIX
compliant operating systems.

After robustness testing, several unproperly handled inputs are identified.

The exception handling mechanisms can be improved by using a software

wrapper [DK02] [PKS+01], i.e. an interface to the COTS component that

screens out exceptional parameters for specific functions, providing graceful

failure notification for known robustness failures’ inputs: an error code is

returned, or an exception is thrown, and the service request is not executed

at all by the COTS component. Robustness testing results can be used to

improve test suites, and to better understand exceptional conditions that
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trigger robustness failures.

1.4.3 Dependability Benchmarking

Dependability benchmarks are a generic way to characterize a component or a

system in the presence of faults, allowing to quantify dependability attributes.

A dependability benchmark describes a procedure to obtain such measures,

that verifies the following standardized properties [MKA+01] [DM04]:

Representativeness : the workload and faultload submitted are those typ-

ically experienced by the benchmarked system;

Portability : in order to compare a set of systems in a given category, the

benchmark has to be implementable for all of them;

Repeatable : results produced should be (statistically) reproducible across

repeated benchmarks;

Feasibility : the time and the efforts needed to implement and execute the

benchmark are minimal;

Low intrusiveness : the perturbation in the system by the benchmark

implementation should not alter the meaning of the results.

Dependability benchmarks standardize common dependability evaluation

techniques in an unambiguous and clear manner, and simplify interpretation,

understanding and comparison of results; they are similar in intents to per-

formance benchmarks, shifting the scope to dependability. Dependability

benchmarks already exist for general purpose operating systems, On-Line

Transaction Processing (OLTP) environments, real time and embedded sys-

tems.

The subject of the benchmark, the Benchmark Target (BT), is a sub-

system or a component that is part of a larger system, the System Under

Benchmark (SUB); the SUB includes all is needed to execute the workload

and the benchmark itself. A faultload is the set of faults and exceptional

conditions (including stressful workload) that are introduced in the SUB to

emulate the behavior of a faulty system; experiments based on fault injection
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are conducted to assess the dependability of the BT. In order to keep the

results meaningful, the BT is not directly affected by injected faults; faults

are instead injected in the Fault Injection Target (FIT), another component

that belongs to the SUB, and the impact of error propagation to the BT is

evaluated. The FIT is chosen ensuring that its misbehavior will reflect on

the BT, with an high fault activation rate (see figure 1.4).

(Benchmark Target)
Component Component

Fault

Error
System Under Benchmark

Measurements

Component
(Fault Injection Target)

Figure 1.4: The fault injection target of a dependability benchmark is the software
component designated to spread errors to the benchmark target.

The choice of the FIT is fundamental to pursue experiment effectiveness.

A possible choice of the FIT for dependability benchmarking of an operating

system (figure 1.5) are its drivers, that represent a significant part of its

code, and are frequently reported as source of failures. If drivers have to

be included in the BT, faults can be injected at hardware level (at least

emulated by software, taking care of not modify the BT code), or at the

userspace application level (e.g. the Ballista project, § 1.4.2). The operating

system can also act as FIT if the BT is an userspace application, for example

a web server.

It is worth mentioning the European Dependability Benchmarking project

[MKA+01], which defined a conceptual framework for specification of depend-

ability benchmarks; it introduced several dimensions by which a benchmark

can be described, grouped in three classes (figure 1.6):

Categorization : describe the targeted systems, the benchmark context

and purposes;
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Figure 1.5: A perspective of dependability benchmarking from the operating sys-
tem’s point of view. Faults can be injected both in external components (device
drivers and application programs), or at the interfaces between them and the op-
erating system.

Measure : the set of attributes assessed by the dependability benchmark, in

well-specified operative conditions, concerning the benchmarking con-

text;

Experimentation : aspects related to the experimentation to obtain se-

lected measures.

A measure may concern with the overall system at service delivery level

(comprehensive measures, e.g. its availability) or a particular facet (specific

measures, e.g. its ability to detect the presence of errors). Measures can be

obtained directly from experimentation (namely, measurements) or from an

analytical model parametrized with experimental readings (e.g. to calculate

availability using a parametrized Petri net). Because fault activation may

lead to a performance degradation in comparison of non-faulty scenarios,

performances in the presence of faults should be measured.

In dependability benchmarks of general purpose operating systems (the

BT), faults’ impact on both SUB (the operating system with libraries and

hardware) and the workload could be evaluated; two classes of measurements,
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Figure 1.6: Dependability benchmarking classes of dimensions.

namely robustness and temporal, can be defined. Figure 1.7 shows possible

experimental outcomes when faults are injected by system call parameters

corruption.

It should be noted that although several measurements refer to the whole

SUB (e.g. execution and restart times are hardware-dependent), they can

also be considered as characterizing the BT (e.g. the absolute execution times

are of little interest; instead, the difference between times in the presence of

faults and in the nominal behavior may be considered).

Outcomes in figure 1.7a are a set of general high-level results from faulty

execution of an operating system. When SEr and SXp occur, the workload is

notified about the problem by an error code returned or an exception issued

by the OS (in turn, the OS was triggered by an event such as an interrupt or

a CPU exception). When an exception is issued during execution of kernel

code, the OS enters in the panic state (the SPc outcome), where the workload

is aborted; a soft reboot may be still possible. In the hang state (the SHg

outcome), the kernel no longer replies to issued requests (e.g. it is executing

an infinite loop, or waiting for an event when interrupts are disabled); an

hard reboot is required. When the SNS outcome occurs, the kernel simply

returns a result to the workload after the system call invocation (the result

can be correct or wrong), without reporting errors; because the workload

is still executed, any of the workload outcomes in figure 1.7b can occur.

Observation of the workload final state is helpful in evaluating the impact of
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(a) Operating system outcomes. (b) Workload outcomes.

(c) Temporal measures.

(d) Combined outcomes.

Figure 1.7: Possible measurements for operating systems dependability bench-
marking.
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the OS on the workload. The set of possible combined outcomes is depicted

in figure 1.7d.

Other possible outcomes from the OS can concern to: the boot procedure

(e.g. completed without warnings; not completed with or without failure

informations); the OS ability to automatically reboot (during the boot pro-

cedure or workload execution); effects on the hardware (e.g. a device is

disabled, unusable, re-initialized, or introduces errors on the data written or

read by the OS); error codes returned by internal kernel function invocations

(e.g. procedure calls made by device drivers to kernel facilities). Outcomes

can be observed by internal assertions implemented in the kernel (e.g. by

measuring the memory load - the average number of allocation requests -, the

number of allocation requests that enlarge the allocated memory data seg-

ment, and other internal activities of kernel components). Those and other

outcomes can be introduced in the benchmark specification; they can be de-

rived by user reports or static code inspection, although the fault injection

experiments can point out unexpected failure modes.

Temporal measures (figure 1.7c) include OS reaction times, i.e. the time

elapsed before a feedback is provided (SEr, SXp, SNS), and OS restart time,

i.e. the time needed for a system restart after a fault (e.g. time spent in

recovery checks and actions); the latter can significantly affect the availability

of the system. Workload execution times can also be influenced by a fault,

and can be included between experimental readings. Temporal measures

should be compared with ones in the nominal behavior; such nominal times

should be measured for the instrumented kernel when instrumentation has

no actual effects on execution.

Combined outcomes in figure 1.7d are an example of generic failure modes.

However, failure modes can be related to a specific observation goal, depend-

ing of the particular context in which the OS will be integrated. Failure

modes can be coalesced in fewer failure classes, and a severity can be as-

signed to each class according to the desired interpretation of benchmark

results. Typical profiles by which failure modes can be grouped and ordered

are:

Availability : failure classes in which the system can be considered still

usable are preferred over that in which OS or workload availability are
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affected (e.g. no signalling is somewhat better than a crash);

Responsiveness : failure modes in which a feedback is returned to the user

are preferred (e.g. a crash is better than no signalling);

Safety : the system is considered safe if its execution is correct even in the

presence of faults (e.g. workload incorrect completion is worse than

workload fail-safe stop by an exception thrown).

More than one outcome can be observed during an experiment. In the

case of several outcomes, and experiments have to be categorized univocally

by a specific outcome (e.g. the benchmark purpose is to measure the per-

centages of OS failure modes), the classification can be made by choosing an

outcome among the set applying a criterion (e.g. the outcome severity, or

the temporal order of events); this criterion has to be defined on the base of

benchmark purposes, because it can affect the interpretation of results.

After the execution of a dependability benchmark, in order to guaran-

tee reliable results, a verification of the benchmark’s properties fulfillment

(representative, repeatable) should be conducted. The faultload representa-

tiveness come from the choice of a fault injection technique which emulates

real faults from the field (i.e. equivalence of the impact and consequences of

faults, in the error domain) [JAC+02]; moreover, if a limited part of the FIT

is subjected to fault injection (e.g. a subset of the system calls is chosen for

parameter corruption), a sensitivity analysis should be conducted in order to

validate this choice (e.g. obtained results should be statistically similar if we

vary the system call or data type corrupted, or the corruption technique).

Representativeness of workload selection is also important, because it im-

plies the activation of residual real faults, and therefore it is a prerequisite

to assume the results as representative of the real operational system.

Results from the dependability benchmarking include the experimental

outcomes after injection of several faults, that differ in type and location.

From these results, a statistical characterization of the BT can be outlined;

examples of conclusions that can be drawn by a dependability benchmark

are:

• The frequency of each failure mode, and an estimation of the relative
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occurrence of these outcomes on the real system (if the faultload and

the workload reflect field data);

• A qualitative characterization of the OS by a specific failure profile (e.g.

by the types of failure modes occurred, the OS can be evaluated from

the point of view of safety, availability, responsiveness);

• A comparison between several releases from the same OS family;

• An estimation of the robustness of the OS in the presence of faulty

components (e.g. device drivers, applications);

• An estimation of the fault activation rate (by the ratio of the number

of experiments in which a failure is observed to the total number of

experiments);

• The extent of error propagation between kernel components (by com-

paring the fault-injected kernel component to the component in which

a failure is signalled);

• The impact of faults on execution and restart times.

In order to improve the diagnosis of the impact of an injected fault, the

subsequent execution of a “replay“ workload can be made. This is useful

to increase the fault activation rate and reduce the number of experiments

without observed effects (i.e. no signalling); the replay workload can consist

of the same workload used for the experiment.

Moreover, the system’s current state can influence an experiment alter-

ing benchmark outcomes. However, this factor is not taken in account in

benchmark specifications, in order to make it feasible: usually, the system

is rebooted before the beginning of each experiment. Ramp up and ramp

down phases, for each experiment, can be planned to increase and decrease

gradually the system’s load before and after a fault is injected, respectively,

to establish the system’s state, and experiments can be executed consecu-

tively without reboots [DM04] (except for hard failures such as kernel hangs

or crashes) if a sufficient time between them is waited (this wait should be

much longer than the time required for former injected fault activation),
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and rebooting periodically in order to take in account FIT internal degra-

dation; this procedure is somewhat similar to performance benchmarks. In

general, fault injection techniques do not consider the effect of software aging

[LRAL04], that progressively corrupts the system’s state leading to failures:

only fault analysis based on field data succeeds in detection of such phenom-

ena [XKI99]. This problem is similar to the software engineering’s issues in

object-oriented code testing, in which the internal state of an object has to

be taken in account to test its methods.

1.5 Dependability improvement

1.5.1 Improvement of COTS-based systems

The techniques described in previous sections focus on software dependability

evaluation: they can be used in order to compare different systems or differ-

ent releases of the same one, to discover the overall behavior of a (COTS-

based) system in the presence of faults, and to estimate its adherence to

dependability requirements. Those techniques can be applied both on the

final system and on prototypes and models during development phases. In-

stead, existing dependability improvement techniques can only be applied

on the latter, intervening on the development process: ODC [CBC+92] and

software-reliability engineering techniques [MA89] are applied to the devel-

opment process in order to ship systems guaranteeing quantitative depend-

ability attributes (by tuning duration and focus of testing and development

efforts); moreover, run-time software fault-tolerance can be introduced in the

system design phase to cope with software transient faults that unavoidably

elude tests.

Such techniques can not be employed to increase dependability of already

existing COTS components, that often are not designed with dependability in

mind. Moreover, due to complexity, or to the lacking of source code and doc-

umentation, COTS integration can lead to subtle faulty interactions within

the system [MP05]. We would like a technique for improving dependability

of a complex, component-based system with the following features:

• Can be (semi-)automatically deployed and configured for an existing

27



1. Dependability of Operating Systems

system;

• Does not require any in-depth knowledge of internal architecture of the

system;

• Portable among a broad class of systems, at least of the same category

(e.g. operating systems, web servers, database management systems);

• Feasible and cost-effective;

• Does not impose an excessive performance overhead.

1.5.2 System reengineering

Many works focus on reliable design of operating systems, e.g. microkernel

based. In [HBG+07], an operating system design (implemented in the Minix

operating system [15]) is proposed that enables recovery from malfunctioning

components: such design exploits isolation (by enforcing a privilege-based ac-

cess scheme to logical and hardware resources) between the kernel and failed

device drivers (running in user-level processes), to prevent error propagation

and to tolerate failures by dynamic restart of a failed process: often the

problem does not occur again after the replacement of a process, because the

faults activation conditions (trigger) are occasional (transient faults). This

approach relies on the ability of detecting a failure in monitored components

(at the moment it is limited to fail-stop failures, e.g. a crash), therefore un-

derlining the importance of an effective detection mechanism. In this work

it is also suggested that the driver isolation idea can be generalized to mono-

lithic commodity operating systems by enclosing them in user-level processes.

Other approaches to the isolation of faulty components are based on vir-

tual machines, i.e. a fictitious execution environment in which applications

and operating systems (guests) can run as they would on a private physi-

cal machine, being unaware of other concurrent virtual machines. Virtual

machines usually come in the form of full virtualization and paravirtualiza-

tion: in the former case, the virtual machine consists of virtual devices and
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Figure 1.8: The microkernel-based architecture of the Minix failure-resilient oper-
ating system [HBG+07]. Both device drivers and major subsystems run in isolated
user-space processes.

it executes as a process in the context of a real (host) operating system1 [22]

[20]; for example, a virtual disk may be implemented by allocating blocks

on the filesystem of the host system; the process encapsulating the virtual

machine will translate accesses to I/O addresses in requests to the host. In

the latter case, the virtual machine (composed by an operating system and

applications) runs on the real machine in the presence of a minimal software

monitor, namely hypervisor, that manages the correct concurrent execution

of virtual machines2 [23]. See [21] for a full classification of the approaches

to virtualization.

Virtualization is commonly recognized as an effective mean to increase the

dependability by enforcing isolation between applications in different virtual

machines. In [LUSG04], an approach is proposed to improve the depend-

ability within a single operating system through isolation of device drivers in

1In general, the term ”full virtualization” embraces all virtualization techniques that en-
ables the execution of unmodified software on a virtual machine; because existing hardware
does not allow the concurrent execution of multiple virtual machines, full virtualization
can only be achieved by the complete emulation of hardware devices. Newer architectures
support full virtualization of physical hardware [AJM+06].

2Because virtual machines delegate resources allocation to the hypervisor, their oper-
ating systems are partially aware of virtualization and require several modifications.
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(a) Full virtualization: virtual ma-
chines execute as processes on a host
system; the hardware is fully emulated
and processes and guest OS are un-
aware of virtualization.
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(b) Paravirtualization: virtual ma-
chines execute on top of an hypervi-
sor, that manages concurrent accesses
to the physical hardware.

Figure 1.9: Approaches to virtualization.

separated virtual machines: each virtual machine contains a subset of device

drivers, and a failure in a virtual machine can not affect the other ones. The

L4 microkernel, which is similar to hypervisor, allows the virtual machine

running the main copy of the operating system to communicate with other

virtual machines running device drivers, and prevents interferences between

virtual machines. This approach allows the reuse of the code of the device

drivers, but still requires several modifications in the rest of operating sys-

tem (both the main copy and the ones running drivers). The implementation

of a case study based on Linux (L4Linux) showed a performance overhead

between 3% and 8%, with a code reuse ratio of 91% and about 10K of LoC

(Lines of Code) to adapt the Linux kernel.

A further approach consists in the robust development of device drivers

based on language-level protection. The Devil language [RM01] is an IDL

(Interface Definition Language) for the high-level specification of the commu-

nication protocol between the driver and the device; such description is then

used to automatically generate stubs in C language that can be used in the

driver, avoiding the programmer to write error-prone code. Moreover, driver

specifications can be checked for consistency during their compilation, and

assertions are included in generated stubs code in order to check for correct
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Figure 1.10: Execution of Linux device drivers in isolated virtual machines
(L4Linux) [THB06].

usage by the driver at compile time, and for correct (specification-compliant)

behavior of the driver and the device at run time, thus preventing common

software defects.

A similar language-based approach is employed in the design of the Sin-

gularity operating system [HL07]. The communication between programs

(executed in SIPs, Software-Isolated Processes, similar to ordinary processes

in other operating systems) is based exclusively on message passing through

the abstraction of contract-based channels. In fact, applications and operat-

ing system’s components are written in Sing#, an high-level and type-safe

programming language, in which the communication is described in terms of

a state-based protocol (like a Finite State Machine), using dedicated language

constructs; static program verification is made both when intermediate byte-

code (a set of CPU-independent instructions interpreted at run-time) and

native code (CPU-dependent) are generated, to avoid that a non contract-

compliant program could be loaded. Moreover, the Sing# language provides

automatic memory management and garbage collection, and seals each SIP

address space by other SIPs (e.g. by omitting pointers or similar constructs):
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because each SIP is language-constrained to not access external memory ar-

eas, all SIPs can be executed within the same address space (communicating

only with message exchanges), thus ensuring a low-overhead software isola-

tion between processes (opposite to MMU-based isolation present in other

operating systems, that requires to set-up further data structures at each

context switch). Both user applications and operating system’s components

(e.g. filesystems, drivers) are developed in Sing# (thus dropping backward

driver and application compatibility), and executed in the context of the

Singularity microkernel. Finally, SIPs can not dynamically load or modify

executable code, therefore code extensions (that are considered as a major

source of failures) have to be executed in distinct and isolated processes; a

manifest is needed to execute a program, describing the expected behavior,

its required system resources, capabilities and dependencies, that are stati-

cally and dynamically verified.

1.5.3 Component wrapping

Component wrapping provides a way to wrap software interfaces to han-

dle exceptional inputs and prevent failures; the Ballista project [DKG99]

proposed a procedure to automatically discover robustness failures at the

system call interface of POSIX operating system, based on the specification

of function signatures and exceptional parameters’ values (1.4.2). Another

approach to increase operating systems reliability is to apply component

wrapping to device drivers (and, optionally, to other kernel subcomponents);

in the Nooks model [SBL03], each wrapper monitors interactions between a

device driver and the kernel (figure 1.11). When the driver makes a call to a

kernel function, or the kernel makes a call to a driver function, the correctness

of exchanged parameters is first verified by the wrapper, and then the call is

serviced: therefore developers have to explicitly write wrappers for semantic

checking. Virtual memory management is used to protect kernel data from

direct write accesses by wrapped drivers; a kernel object can be accessed only

through wrappers, that copy data into temporary write-enabled location, pre-

venting data corruption by a misbehaving driver. Nevertheless, drivers still

execute in privileged mode and wrappers can not prevent malicious drivers
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from re-enabling write access to kernel data. Automatic recovery is man-

aged by an user-space agent; when a failure is detected (through parameter

checks, process exceptions or explicit external signals), a complete reboot of

a device driver is made and resources are released; a transparent recovery to

user-space processes is possible, but it is not guaranteed.

Figure 1.11: The Nooks approach for device drivers wrapping, in order to check
all values exchanged with the kernel for validity [THB06].

1.5.4 On-line monitoring

Previous approaches (driver isolation, virtualization, language-based protec-

tion) enhance the operating system ability to isolate errors and allow recovery

procedures; however, they need engineering efforts in order to adapt the sys-

tem to a new architecture, and in some cases they require a rewrite from

scratch of the operating system. Component wrapping turns out to be a

more conservative approach, allowing for the reuse of a major part of ex-

isting operating systems’ code; nevertheless, this approach can only work

around known robustness failures discovered by exhaustive variable-inputs

trials, and does not take in account more complex faults due to long-term

execution and internal interactions, thus it leaves residual transient bugs in

the source code. The data from the field shows that the most frequent er-

ror triggers were boundary conditions, recovery and timing; the execution

on the operational site reproduces these triggers better than testing efforts,
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and so this approach can not discover most complex faults; moreover, the

effect of software aging, by which the memory state is slowly corrupted (e.g.

memory leaks, arithmetic approximations, resource exhaustion), is not con-

sidered. FFDA campaigns showed the extent of such problems; nevertheless,

data is analyzed much time after collection. A complete technique should

be designed to face unexpected faults, by discriminating a correct behavior

of the system from a faulty one; this discrimination can be done by on-line

monitoring and analysis of the system, i.e. the observation of critical vari-

ables during its execution. On-line fault diagnosis an innovative approach

that aims to identify the presence of an error (detection) in real time, and

to trace its causes in terms of location and type (isolation) in a COST or

component-based system (the operating system is viewed as a part in a more

complex design that includes middleware, third-party libraries and applica-

tions). After that a failure is traced, recovery and reconfiguration may follow

to restore correct execution conditions [BCCR04].

As a consequence, on-line diagnosis is founded on the ability to notice a

misbehavior of the system within a short period of time. Commonly, modern

operating systems comprise several facilities for event logging : logged events

may concern to regular activities on the systems, or they may be mani-

festations of internal errors; FFDA campaigns are often based on logging

activities. However, if the operating system is not designed for dependabil-

ity, its ability to log events of interest is limited: failure symptoms can go

unnoticed or be misleading (low detection quality), or they are logged only

after a significant amount of time (latency).

Another approach to detection consists in synthesizing the correct execu-

tion profile of a system in the form of invariants or rules, i.e. predicates that

hold when the system behaves correctly, that can be checked subsequently.

The difficult in defining a behavioral model that describes the correct exe-

cution makes this approach less attractive for application in large systems

like operating systems: invariants have to be so general to include behaviors

similar but not identical to expected ones, and also enough specific and ac-

curate in such a way that their violation can be indicative of the causes of

an error. Moreover, they do not take in account complex phenomena like

software aging.
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We aim to introduce a dedicated component, namely a failure detector,

that produces a notification about the problem occurring when the system’s

state manifests symptoms of known faults and deviates from the correct

behavior. Knowledge about faults and symptoms (a fault model) should

be gained by pre-operational monitoring of the system (e.g. during fault

injection and workload stressing experiments), to be employed for on-line

monitoring by a failure detector later in the operational phase; the fault

model should be incrementally increased, in order to improve quality of de-

tection. The failure detector should also offer support to fault isolation (by

generating useful hints about a fault for the fault diagnoser), have a small

computational overhead, and provide a better Quality of Service (QoS) than

standard logging facilities, in terms of accuracy and latency (QoS metrics for

failure detectors are discussed in [CTA02]).

In the following chapters we are going to define and evaluate an approach

for failure detection on the Linux operating system. Kernel execution will

be monitored by means of internal probing; in the pre-operational phase, an

analysis of system behavior under errors is made, that can be used by a fail-

ure detector in order to do on-line monitoring of the operating system; finally,

its effectiveness in terms of accuracy and speed will be evaluated by conduct-

ing a case study on a distributed system with dependability requirements.

We expect that such a failure detector can be useful for a more complex

user-space agent responsible to autonomously correct the system behavior

by applying recovery means, and thus leading to an improvement of overall

dependability.

1.6 Conclusions

In the past years, different ways to evaluate and compare dependability of

complex systems were proposed. Those approaches can be grouped in three

categories: analytical modelling, field monitoring and analysis, fault injec-

tion experiments. Model-based methodologies are well established, and they

provide useful qualitative insights and complex quantitative measures of sys-

tem’s behavior; nevertheless, the correspondence between the model and the

real system is hard to be ensured, and its parameters have to be refined by
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experimental campaigns, therefore those methodologies seldom can be af-

forded for non-critical systems. More cost-effective techniques are based on

actual execution and examination of system’s behavior; they require little or

no knowledge of system internals (”black-box“), and can be applied for large

and distributed systems too. Techniques based on field data (FFDA) best

extrapolate the dependability behavior in operational contexts (real phenom-

ena like failure modes can be observed), but they require a large observation

time and therefore not much can be done to improve the system itself.

Fault injection techniques are good for time and cost effective dependabil-

ity evaluation; they can be applied in post-design life phases of software sys-

tems, and can be used for improvement of fault tolerance mechanisms. In or-

der to improve effectiveness and portability, fault injection based frameworks

were defined (namely robustness testing and dependability benchmarking),

standardizing procedures for dependability evaluation and lowering time and

efforts required to perform the experiments. Depending on user’s charac-

terization goal, a benchmark could be defined to best describe the system’s

behavior from a particular point of view (e.g. defining and classifying ex-

periments’ outcomes by availability, responsiveness and safety). However,

workload and faultload representativeness are a critical factor in assessing

dependability attributes, and do not take in account the system’s state pre-

ceding a real fault; field data are essential if a comprehensive view on system’s

dependability is desired.

Finally, even if dependability evaluation can give a feedback to system’s

developers, it is of little help in defining strategies for automatic fault treat-

ment and recovery. An approach is needed to improve the dependability of

existing systems in a cost and time effective way; in fact, existing approaches,

like microkernel design, didn’t make a success because they are complex or

unfeasible to maintain. A mechanism based on a failure detector will be in-

troduced in the following chapters, that can be used to apply dependability

means to COTS-based systems.
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CHAPTER 2

An overview of Linux kernel analysis tools

Everyone knows that debugging is twice as hard
as writing a program in the first place. So if you’re
as clever as you can be when you write it, how will
you ever debug it?

Brian Kernighan

2.1 Introduction

In this chapter, we are going to review several utilities to inspect the Linux

operating system; their goal is to collect field data from a kernel running

in a test or production environment, in order to discover failure modes and

to apply dependability means. Data of interest about the kernel state is its

internal variables (running tasks, loaded modules, acquired locks, and so on),

user and kernel stacks, and more in general the memory raw image during

and after a failure.

The tools that will be covered are officially supported by Linux kernel de-

velopers, and included in the main kernel 2.6 tree; they also require several
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user space utilities, usually shipped with Linux distributions or freely avail-

able on the Internet. Other tools are referenced at the end of this chapter.

2.2 Kexec and Kdump

The Kexec patch is included in the Linux kernel since version 2.6.13. The

kexec() system call reboots on the fly the running kernel, and executes

a new kernel previously loaded in memory. It differs from the classical

sys_reboot() call because the reboot does not need to go through hard-

ware reset and BIOS startup, but directly executes the pre-loaded kernel

image; only the last boot stage is actually executed, in which the kernel

initializes its data structures, probes the hardware devices and load device

drivers.

The reboot procedure can be triggered by the user, or executed after a

kernel panic; it is faster than usual reboot and can improve availability of the

kernel itself, or can be employed by kernel developers to shorten development

time. Moreover, the new kernel may differ from the rebooting kernel: it can

be an older and well-tested Linux kernel release (useful when a new release

is just introduced in a production environment), or can be an instrumented

kernel for automatic fault treatment.

At boot time the initial kernel allocates a memory region; then the

kexec_load() system call is invoked by the user in order to load a sec-

ond kernel in that region. The loaded kernel can boot from that location

without moving, and so the old memory image can be mostly preserved for

subsequent analysis when the second kernel is executed. The Kdump patch

(also included in the kernel) does such analysis: particular actions are taken

by kexec() to not overwrite the previous kernel when executing the second

kernel. The memory region needed for boot (the first 640 KB for x86 archi-

tectures) is saved in a pre-allocated backup region (together with processor

registers), and will be available in future.

After booting a customized kernel (capture kernel), the original kernel’s

memory image is made available in ELF (Executable and Linking Format)

structure through the /proc/vmcore virtual interface, and can be analyzed

by standard utilities such as gdb and crash. The capture kernel can make
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Figure 2.1: Memory organization for kexec/kdump.

a dump in different ways: it can store the image on the disk or through

a network using user-space programs defined by the system administrator

(e.g. a simple shell script can execute the cp command on /proc/vmcore),

similarly to other tools such as diskdump and netdump. Dumping can also be

done before trying to mount a corrupted root filesystem, with utilities in the

initial ramdisk. Moreover, the raw memory image can be accessed through

the virtual device /dev/oldmem.

A matter of interest is the reliability of the dump operation. When the

initial kernel goes into a panic, it can not longer be trusted: its state may be

corrupted, and execution of critical code such as device drivers can damage

hardware and file systems, or interfere with network activity. By running

a new bare capture kernel instead of the unstable kernel, the reliability of

any dump or recovery action is increased. Moreover, before capture kernel

execution, an integrity check is made on the capture kernel’s code by the

code in the purgatory segment (it setups the backup region and the capture

kernel, and applies an hash function on this kernel). Execution in a reserved
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memory region protects the capture kernel from ongoing DMA operations (on

x86 architectures, DMA uses addresses in the range between 0 and 16 MB).

Nevertheless, fast reboot can be risky because hardware is not correctly shut

down, and driver initialization of capture kernel can fail; more work should

be done on drivers to guarantee correct initialization after a panic.

2.3 OProfile

A profiler is a tool for applications’ performance analysis: it monitors the

dynamic execution of a program, measuring the amount of time spent in

each section of code. The main objective of a profiler is to identify perfor-

mance bottlenecks, in order to optimize critical parts of the program code.

In general, profilers collect information about events occurred during code

execution: in fact, profilers are also used for cache misses and branch mis-

predictions counting.

Profilers can also be useful for failure analysis, because the code executed

in a short period previous to a failure can be correlated with the failure itself.

It can also reveal what parts of the kernel were stimulated by a workload,

what is the total average system load (e.g. number of tasks in execution, or

CPU idle time) and what is the kernel overhead on the overall system load.

OProfile [18] is a system-wide, fine-grained profiler included in the Linux

kernel, that can profile both applications and the kernel itself. It is a so called

sampling profiler : at regular intervals, it collects information about the cur-

rent task in execution. Instrumentation profilers compose another category

of profilers; they modify the original source code in order to collect informa-

tion (such as procedures execution times). An example of instrumentation

profiler is gprof [6].

In comparison to sampling profiles, instrumentation profilers are more

accurate counters: the instrumentation code is executed exactly once for each

event happened. The main drawback is that the instrumentation of code can

alter performance measurements: in modern superscalar processors, with

out-of-order-execution, any code addition can significantly affect execution,

especially for small routines executed frequently (this is the case of a kernel).

Sampling profilers can sometimes miss an event, and their approximated
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measurements should be considered as a statistical result, which is significant

if the code is executed for long periods of time. These profilers can be

useful thanks to their lower CPU overhead: timer interrupts are executed

to store the Program Counter, that can be later correlated with the original

source code, and the sampling frequency can be chosen to best accomplish

the accuracy-versus-overhead tradeoff; the profiler execution still affects the

instruction flow (interrupt requests can flush CPU pipelines), but temporal

measurements, if significant, are more realistic for short procedures. The

result is a relative measure instead of an absolute one, because it is expressed

in terms of ratio between procedure’s samples and total samples.

OProfile can be utilized for kernel profiling. If the kernel is built with

debug symbols, it can report the number of samples collected for each rou-

tine (even for each instruction) in the source code. OProfile supports hard-

ware performance counters: modern CPUs reserve some registers for event

counting, that are increased by the hardware when a particular event occurs

(e.g. the execution of an instruction, a cache miss, and so on), and a Non-

Maskerable Interrupt (NMI) is generated if the count overflows a threshold;

the events and the threshold value can be configured by software. NMIs

are useful because parts of kernel in which interrupts are disabled can be

sampled, too. Interrupt delivery can be slightly delayed, so an event might

be accounted to a different near instruction; this and other inaccuracies to

take in account when interpreting profiles are described in the OProfile user

manual.

An user-space daemon collects profiling data from the kernel, and then

dumps it to the filesystem. Profiles also can be organized by profiling session,

and separately examined; a periodical dump routine can save profile collected

in the period of time since the last dump. Moreover, OProfile has a limited

support for call graphing: for each sampled function, it can show the number

of times it is called by each other sampled function, and what amount of time

is spent by the function in each sub-routine called.

In conclusion, OProfile can be useful for profiling low level code such

the kernel and its modules, or libraries, and even if its measurements are

approximated, it still can yield representative aggregated information about

system load and kernel activity.
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2.4 User Mode Linux

User Mode Linux (UML) was defined by its author “a port of Linux to

Linux”. It is a modified Linux kernel that can run as a process in a Linux

environment (host), and it appears as a virtual machine to its processes:

they cannot distinguish it from a physical machine, and they are executed

unmodified.

UML [20] is similar to other industrial solutions such as Xen [23] and

VMWare [22]: it enforces isolation and resources abstraction to programs

running on the same physical machine. UML can only run Linux on a Linux

host: so its range of applications is restricted, but at the same time it can

exploit facilities of the underlying host and UML kernels to achieve better

performances. Its main employment is in kernel development: because an

UML kernel run as a common unprivileged process, it can be modified and

tested without worrying about damages in software and hardware resources,

and so can be utilized for development of features not related to physical

devices, such as filesystems, schedulers and memory management; moreover,

its virtual networking support may be a substitute to the employment of

physical network equipment. As its commercial counterparts, several UMLs

can be utilized to offer hosting to customers’ applications: each service can

be executed as in a private environment, without interference from other

processes, and providers can consolidate hosting on few physical machines,

exploiting performance of modern multiprocessor servers and lowering setup

and management costs.

UML can also be useful in the context of dependability. Resource virtu-

alization can limit error propagation between services on the same machine,

as it would be if they executed on different physical machines (virtual and

physical machines and their services can only interact through the network);

isolated services’ execution (namely, jails) can be used to prevent malicious

users, which compromised a virtual machine, from accessing resources on the

host system; the host can apply automatic recovery countermeasures even

if the guest system failed, and collect data about failures; fault handling

and recovery of distributed systems can be tested within virtual machines’

networks before physically deploy them. However, UML is not suitable for
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testing and stressing of real device drivers, because an UML kernel works

with virtual peripherals.

An UML kernel can be created by compiling default Linux kernel source

code for an artificial target architecture (using the ARCH=um make parameter).

The result is a standard ELF executable, that can be run on any vanilla

Linux system. The UML kernel attaches a console to the standard input

and output of the host process running it (i.e. the xterm in which the UML

binary is executed), and other virtual devices of the UML kernel can be

attached to host system ones (such as consoles and pseudo-terminals). Each

virtual block device (such a disk) on the UML kernel is backed up on the

host system by a common file, and reads and writes are redirected to host

file’s blocks. UML user space utilities can make backup of virtual disks’

contents, increase their size, and configure them for block sharing between

virtual machines, namely the Copy-On-Write mechanism. The UML kernel

access these blocks, formatting them with any supported filesystem, without

affect the underlying host filesystem: the UML filesystem is seen by the host

as a simple file. The UML kernel make use of O_DIRECT I/O [BC05], in order

to bypass host kernel caching (if not so, there will be useless cache entries

duplication because UML kernel implements its own page cache). At least

one virtual disk has to be configured as the root filesystem in order to boot

an UML kernel, and must include all libraries and system files needed to run

a Linux operating system. In general, the UML kernel is built only with a

small group of drivers, to access virtual devices exposed by the UML kernel

itself (and indirectly mapped to host resources).

The UML kernel and its processes are executed as native processes of

the Linux host system; UML processes’ system calls to the host kernel are

redirected to the UML kernel using ptrace() [32] [33], and executed in that

context. There are two main approaches by which the UML kernel can

control UML processes execution; a third mechanism, called Tracing Thread,

is deprecated. The first execution mode is indicated as skas3 (the acronym

stands for Separate Kernel Address Space). The UML kernel code and state

resides in a separate host process, and all UML processes are executed in the

context of a single host process.

Unlikely to an usual Linux kernel, the UML kernel address space is not
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mapped in the higher 1 GB of the (user) address space of each UML process;

if it were so, the UML process program would have the opportunity of read

and write the UML kernel memory image, because the host process executing

that program would access the whole user address space of the host process

(containing both UML process’ and UML kernel’s address spaces). For ex-

ample, in 32-bit systems, where the total address space size is 232 = 4GB, the

Linux kernel is typically configured to use the top GB addresses (in the ad-

dress interval [224, 232− 1]) as kernel address space, and the remaining 3 GB

address interval ([0, 224−1]) as user address space; in the scenario previously

depicted, both the UML kernel and an UML process are allocated in the host

process user address space [0, 224−1], and the host process that executes the

UML process can read and write the whole address interval, which is a se-

curity threat for the UML kernel. Moreover, the limited 3 GB address space

available (this is the case of Linux on x86 systems) is a strong constraint for

UML kernel and processes, and require use of High Memory to manage a

large “physical” primary memory, with a performance drawback (to be more

precise, UML kernel’s primary memory is not a real physical memory, but a

portion of the virtual memory allocated to the host process wherein UML is

executed). Instead, the UML kernel address space is allocated in the (wider)

user address space of a distinct host process, inaccessible by a different host

process that executes the UML process’ program.

Separating the address spaces requires a particular patch to be applied to

the host kernel in order to make the UML kernel able to do some operations

on a host process containing an UML process, such as page fault handling.

The ptrace() system call is modified, so the UML kernel, passing a specific

flag, can receive SIGSEGV signals caused by an external UML process; more-

over, the UML kernel can modify the memory mappings for an UML process

(changing the address space descriptor of the task), and retrieve swapped

pages from a virtual block device. In general, the UML kernel can create

(and then delete) an address space without allocating a new process on the

host system, and can substitute the address space descriptor for the child

process: so it can manage several UML processes with only one host process,

lowering the overhead for the host kernel (e.g. a context switch of the UML

kernel does not require a full context switch on the host kernel).
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Figure 2.2: Address space layouts for different UML execution modes.

Another execution mode is called skas0; it realizes a mechanism similar

to skas3, without patching the host kernel. Again, UML kernel is executed

in a separate host process, but each UML process is executed in its own host

process. Each UML process address space include some code (in the top two

pages) to allow address space updates; the UML processes cooperate with

the UML kernel, and when a SIGSEGV is handled by the code injected in the

UML process, the UML kernel is notified and performs the adjustments to

the process memory image needed for page substitution. In fact, the primary

memory of the virtual machine is mmap-ed to a file in the /tmp directory of the

host system; this file is accessed by the UML kernel for page replacement,

and therefore updates are seen by UML processes; then the UML process

makes the needed virtual memory mappings through mmap on the same file,

as requested by the UML kernel. To improve performances, the mmap-ed file

should be stored in a ramdisk (e.g. tmpfs) to keep it in physical memory

instead of the disk. This approach require that each UML process is execute

inside a distinct host process, because the UML kernel can not replace the

address space descriptor of processes; in general the skas0 approach is less
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efficient, and skas3 is suggested to optimize system resources utilization.

In a UML system, time flowing is virtual. The UML kernel and its pro-

cesses are executed within host processes, running in a time sharing host

system. Time clock for the virtual machine is increased only when UML is

scheduled by the host kernel, therefore the length of a virtual time period

differs from the real time elapsed. This can be tolerable for applications that

do not need to interact with processes on other systems (virtual or physical),

otherwise synchronization is needed. Temporal offset can be compensated if

the virtual clock is synchronized with the host clock at each schedule time

slice: the UML kernel does so by invoking its timer interrupt routine for

each past clock tick since the latest time update, and the time is increased

in a non-uniform mode; this behavior can be enabled at UML compile time.

The virtual time flowing can be useful for debugging: when data is dumped

from an UML kernel (e.g. using printk()s or gdb), the time in the UML

machine is halted, and it is restarted after debug operations by the host, so

UML execution is not delayed; this property avoids timing bugs (such as race

conditions) not to be activated because of delays introduces by the debugger.

The UML binary which contains the UML kernel can be executed through

gdb for debugging purposes; as any other user space process, gdb is allowed

to set breakpoints on it, inspect the program variables, and so on. Trace-

points are an useful feature for field data collection: internal data can be

automatically dumped when a point in the program is hit by the execution

flow, similarly to breakpoints; moreover, gdb can do debug from a remote

machine through a network connection. Signals used internally by UML, such

as SIGSEGV and SIGUSR1, should be ignored by gdb. The UML management

console, an user space tool, can also be used to get runtime information on

UML kernel, to hot-plug virtual peripherals, to modify UML configuration,

and to receive notifications from an UML kernel.

UML supports several mechanisms for networking: an UML virtual ma-

chine can be configured in order to exchange packets with the host machine,

with other UML virtual machines on that host, and with other physical ma-

chines connected through a real network. Different transports are used for

packet transmission to and from the host machine: the most efficient and

commonly used is the TUN/TAP; the host can then forward a packet to the
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physical network, or to a different virtual machine. Another popular trans-

port, used for virtual networking between virtual machines, is the switch

daemon, an user space process that communicates with all virtual machines

through UNIX sockets.

The TUN/TAP transport is an user space interface that enables a process

to send and receive packets to and from a network interface (e.g. tap0), by

reading and writing on a virtual device file (e.g. /dev/net/tun). Therefore,

the UML kernel can open the device file and, through a virtual network

driver, can enable a virtual network interface for UML processes; packets sent

on the virtual network interface (e.g. eth0) on UML machine will arrive to

the host TUN/TAP network interface (tap0), and vice versa. The TUN/TAP

transport resembles a point-to-point Ethernet link between UML and the real

machine.

In order to connect an UML virtual machine to the rest of a physical

network, two configurations on the host machine are suitable: routing and

bridging. In the routing configuration, the host machine’s routing table is

configured to forward packets (originated by and directed to the virtual ma-

chine) to and from the tap0 interface, similarly to a physical interface. If

the virtual machine has to appear as a physical machine connected to the

physical shared media, some workarounds are needed for broadcast-based

protocols (e.g. ARP, DHCP), such as user space proxies for application level

broadcasts’ forwarding. Routing configuration is shown in figure 2.3.

Another solution is the bridging configuration: the host Linux kernel is

configured to work as bridge, in order to forward any layer-2 packet incoming

on an interface to destination interface(s). The eth0 and tap0 interfaces

are attached to the virtual bridge using the brctl user space tool, and the

host kernel has to be compiled with the Ethernet Bridging support. This

configuration is somewhat more sophisticated, but it avoids the recourse

to user space proxies and routing on the host machine; moreover, it does

minimal computing on packets exchanged by the virtual machine. Bridging

is shown in figure 2.4.

UML is a quick and adaptable tool for setting up virtual machines and

virtual networks; therefore its applications are almost unlimited. Utilities,

like Netkit [17] and other UML add-ons, are available to easily build virtual
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Figure 2.3: UML networking: the UML virtual machine is connected to the
host machine through a virtual point-to-point Ethernet link, and it is routed to the
external network.
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Figure 2.4: UML networking: both the UML virtual machine and the host ma-
chine are connected to a virtual bridge, and share the same broadcast domain.

distributed systems.

2.5 KProbes and SystemTap

KProbes is a framework, included in the Linux kernel 2.6 series, for trac-

ing kernel execution using dynamic probes: they are debug points defined

by a code instruction address, and user-defined handling functions are in-

voked when kernel execution hits that addresses. Handlers can be used for

automatic collection of kernel data, without user intervention and prevent-

ing kernel stall; afterwards, brief reports and statistics can be produced for

performance or behavioral analysis. The generality of this approach enables

KProbes to be applied on any part of the kernel. Dynamic probes are de-

fined at runtime, with neither code instrumentation nor kernel rebuilding,

so they can be utilized for field data collection on production systems: they

has been successfully tested for large, complex systems such as Symmetric

Multi-Processors (SMPs).
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Figure 2.5 shows the three parts of KProbes framework. The lowest layer

provides facilities that are architecture dependent such as code breakpoints

injection, process stepping, handlers invocation, and so on. At the time of

writing (kernel version 2.6.20) KProbes is available for the following archi-

tectures: i386, x86 64, ppc, ppc64, ia64, sparc64. The middle layer, named

KProbes Manager, is architecture independent, and provides an API for han-

dlers’ setup and management. The top layer consists of the user defined probe

handlers: by loading a kernel mode, an user can add or remove at runtime

dynamic probepoints, and read or modify kernel data.

KProbes Manager

Arch−independent layer

Arch−dependent layer

Kernel module

User−defined probe handlers

KProbes breakpoint setup

KProbes exception handlers

Figure 2.5: KProbes layered architecture.

When defining a probepoint, the user allocates a kprobe struct, wherein

he specifies the probepoint’s address and the handlers to invoke. Three types

of handlers are available: the first two, pre-handlers and post-handlers, are

called before and after the addressed instruction execution, respectively; the

third type, fault handlers, are invoked before post-handlers if the probed

instruction execution faults (e.g. a page fault occurs): then the fault handler

can process the fault in place of the kernel. The kernel module written by the

user can register the dynamic probe using the KProbes Manager interface

50



2. An overview of Linux kernel analysis tools

with the kprobe structure just defined.

When a probe is registered, the probed instruction is substituted by an

architecture dependent instruction that triggers the KProbes code in the

kernel (in the x86 architecture, the INT3 instruction can be used to trigger a

trap, likewise a debugger would do). When the execution hits the probepoint,

handlers are invoked, and then the probepoint is restored. Dynamic probe

execution is summarized in figure 2.6.

Pre−handler call Single−stepping Post−handler callINT3 trap

the probe point

address is executed

do_int3 triggers

kprobes

INT3 is substituted
by the original opcode

INT3 is restored,
next instruction
is executed

the execution is
stopped, the CPU
throws a debug exception

Figure 2.6: Execution of a dynamic probe for the x86 architecture.

JProbes are another type of dynamic probes: they are based on KProbes,

but JProbes simplify instrumentation of a function entry point. When using

a jprobe, the user specifies a probing function with the same signature of

the probed function: when the probed function is invoked, the probepoint is

triggered, and the probing function is executed; from there, the user code can

easily access the input parameters passed to the original function, without

doing weird address arithmetic. The original stack frame is then restored

and the original function is executed. Jprobes can be registered similarly to

KProbes through the KProbes Manager.

SystemTap [19] is an high-level language, simple and loosely typed, for

defining dynamic probes: with SystemTap, an user can write a script without

the burden to write, compile and load a C kernel module. A SystemTap

script defines actions to execute for each probepoint introduced; that code is

translated in C, plugged in a kernel module, and automatically compiled and

loaded by the SystemTap stap user space tool. The flow diagram in figure

2.7 shows the execution of a script.

When defining a probepoint, the user can explicit the instruction address

to probe like in KProbes, or it can use symbols (e.g. the name of a system

call) defined in SystemTap libraries (namely tapsets) or in kernel debug-

info objects. Such probepoints are called dwarves: an handler is executed

when a function entry or exit point, or a source code line in the kernel or
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Figure 2.7: Phases of a SystemTap script execution.

in its modules, are encountered. Symbols simplify probe definitions, because

the user does not directly work with memory addresses; moreover, scripts

can easily be ported to other kernel versions or architectures, and reused

if the current kernel is slightly modified and recompiled. Another type of

probepoints are timers, that execute an handler in an exact point in time

or periodically, and begin and end probes, that are triggered at module

loading and unloading. Information produced by the handlers in the kernel

are gathered by the stpd user space daemon through relayfs, a virtual

filesystem (also included into version 2.6 kernels) for simple and efficient

access to kernel buffers.

The LKET (Linux Kernel Event Trace) tool is based on SystemTap, and

it is included in SystemTap tapset library. It defines a set of standard probe-

points (hooks) in pre-defined kernel places, to collect information about the

execution in the form of a trace file that is later examined by the user. The

trace is saved by lightweight KProbes’ handlers in a compact binary file,

thus increasing the efficiency of user-space data collection. Several hooks are

defined for monitoring of:
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• System calls;

• Process creation;

• UNIX signals;

• Page faults;

• I/O scheduling activities;

• Task scheduling activities;

• SCSI and network devices activities;

• NFS and RPC activities.

The user can specify the events of his interest through a SystemTap script,

and customize hooks and trace data by defining further probes.

KProbes are a robust mean for inspecting kernel execution. However,

ensuring robustness can be a bottleneck for kernel performance, so KProbes

are not the best suited tool for kernel profiling. In fact, when a probe is trig-

gered, process preemption and interrupts are disabled, to make the probed

instruction execution atomic without expensive state saving and restoring,

thus increasing interrupt latency and lowering system throughput. Moreover,

handler execution on SMP and multi-core systems is serialized (the internal

probepoints’ hash table is locked, avoiding processors’ mutual interference on

execution of instrumented instructions), and two synchronous exceptions are

generated for each probe handling, increasing the delay and the throughput

loss due to KProbes.

2.6 Other tools and related work

Articles [36] and [31] give an in depth view of kdump organization; other

introductory articles on kexec and kdump are [27] and [28]. Another project

similar to kdump is Mini Kernel Dump [14]; other projects for kernel dumping

are [10], [16] and [4], but they are considered less reliable because the dumping
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is executed by the failing kernel itself. Dumps can be analyzed with gdb [5],

or with the specialized crash utility [2].

A general introduction to kernel and application profiling and coverage

tests on Linux system can be found on [Bes05]; older debugging tools are also

referenced in [24]. OProfile is explained in [34] and [Bes05], and the official

web site [18] contains some examples of use; a deeper discussion on OProfile

utilization and limitations can be found on the official documentation on [18].

Many resources on User Mode Linux, such as tutorials, kernel builds and

filesystem images can be found on the site [20]. The book [Dik06], by UML’s

author, gives an exhaustive discussion on design choices, configuration sce-

narios with examples, internals and future development plans. Two howtos

on the use of ptrace() system call for process tracing are [32] and [33].

Netkit is a didactic project based on UML for virtual networks simulation;

it is available at [17].

Introductive articles on KProbes architecture and utilization are [30],

[25] and [35], with example kernel modules. The SystemTap tools can be

downloaded from [19]; see [26] for an howto on SystemTap scripting. An

ongoing project for Linux kernel tracing is LTTng [13]: the kernel is patched

to generate events with low overhead through static source-based probes,

such that high-level analysis on kernel execution (schedule decisions, process

switches, I/O, . . . ) can be done later on the event trace. Another project for

kernel tracing by static probes is LKST [11]. Finally, the Djprobe project [3]

provides a mechanism for dynamic probing of the kernel similar to KProbes,

but the JMP instruction is employed to instrument the executable instead of

INT3, and thus introducing a lower overhead.

2.7 Conclusions

In this chapter several technologies for kernel instrumentation and analy-

sis have been described; these differ in terms of performance, complexity,

range of applications, hardware support, reliability, accuracy of results, so

the choice between them depends on analysis objectives. However, these

tools can be successfully employed for both kernel development and data

collection from real and virtual systems. Their strengths (+) and drawbacks
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(−) are summarized in the following:

1. Kexec and Kdump

+ Automated and fast intervention mechanism after a failure;

+ Reliable under critical software failure conditions;

+ Complete information about execution context after the failure;

− Post-mortem only analysis;

− Memory pre-allocated to the capture kernel is wasted;

− Not reliable if the hardware is faulty.

2. OProfile

+ Low overhead, hardware-based profiling;

+ Useful for kernel profiling and workload analysis;

+ No software instrumentation;

− Statistical, approximated results;

− Little information about the kernel state is collected.

3. User Mode Linux

+ Runs a Linux system in a virtual process-transparent environment;

+ Complete kernel debugging;

+ Protection of hardware and software resources;

+ Enables virtual network testbeds;

− System call overhead, memory consumption;

− Careful hardware dimensioning and software configuration needed;

− Hardware drivers’ code is not taken in account.

4. KProbes and SystemTap

+ Dynamic on-line kernel analysis;

+ Complete information about the execution context;
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+ Simple and powerful probepoints and handlers definition;

− Not-negligible kernel execution overhead;

− Not suited for performance analysis.
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CHAPTER 3

Evaluation of failure detection capabilities of Operating

Systems

You cannot have a science without measurement.

Richard W. Hamming

3.1 Introduction

In this chapter, we discuss about the facilities commonly provided by oper-

ating systems to deliver information about the state of the system to users

and applications, which we refer to as logs. Several works on dependabil-

ity analysis (FFDA) highlighted that data recorded in system logs is often

incomplete or imperfect, and the related dependability measures can be po-

tentially misleading [SK05] [BS95]; moreover, in the majority of cases they

do not allow to go back to the causes of failures [XKI99]. Failure detection is

also a prerequisite for proactive mechanisms to improve system dependabil-

ity, such as these described in [HBG+07]. Our goal is to evaluate the actual

effectiveness of existing detection mechanisms provided by the system (e.g.

printk()s by the kernel, and logs of daemon processes). Then, we try to
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identify symptoms in the system behavior that could be exploited to improve

the detection of errors in the system. Fault injection is used to compare the

effectiveness of different detection mechanisms. We consider two criteria to

characterize a failure detector, derived from [CTA02]:

Coverage the conditional probability of detecting a failure when a failure

exists;

Latency the time required to detect the occurrence of a failure.

Moreover, the failure detector should support fault isolation, by which the

root causes of a failure are determined: an error in a software component can

cause errors in other software components (e.g. a misbehaving component

could corrupt data shared among multiple components), and the error can

propagate again before the system manifests a deviation from the correct

service specification, or a warning is produced by detection mechanisms, in

a software component unrelated to the original fault. Therefore, a detector

should provide useful hints to go back to the offending component, and a low

detection latency is essential not to lose information about the location of the

first error (if several errors are present, the diagnosis can be mislead), and so

to apply fault treatment techniques and to provide corrective maintenance.

We consider the operating system (OS) as an aggregate of different sub-

components: a fault can be located within a sub-component, and its ac-

tivation (the occurrence of an error) can lead to a wrong behavior experi-

enced by other sub-components (the occurrence of a failure of the faulty sub-

component); the failure represents a fault for other sub-components, which

can lead to other errors and failures. When a fault affects the overall operat-

ing system’s behavior, it is causing a system-level failure, i.e. a failure at the

interfaces between the OS and other external components and the users. A

failure of a OS sub-component can also be seen as an error state internal to

the OS itself. Both coverage and latency can refer to failures occurring in a

single sub-component, or to system-level failures (see 3.3.1). In the context

of operating systems, we account as software components the device drivers

and major kernel subsystems (e.g. memory management, CPU scheduler,

filesystems) defined by the general architecture of the system.
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Figure 3.1: The dependability chain illustrating the relationship between faults,
errors and failures in a component-based system [LRAL04].

3.2 Fault Injection Techniques

3.2.1 An overview of fault and error models

In order to evaluate the ability of the operating system to report failures, we

execute fault injection experiments to speed up the activation of latent faults

by simulating the effects of defects in the kernel code. Different approaches

are possible when injecting faults on a running system; we distinguish be-

tween them by:

• the type of the injected fault;

• the methodology by which a fault is injected.

Moreover, the fault injection experiments can be further classified by the

system’s life stage in which they are executed: system design, prototipal and

operational phases; since we focus on commodity (COTS) operating systems,

we will consider fault injection on the final system (the one executed on the

field).

In computer systems, both hardware faults and software faults could be

injected (the latter are defects in the source code that cause an error state

when executed under particular circumstances, namely defect triggers); in
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this work, we aim to study the effects of software defects, so we only consider

injection of them.

Several methodologies are available for the injection. Hardware faults are

deeply understood, and the most frequent hardware error causes are known

and well modeled; they can be physically injected (e.g. the use of a radiation

source to induce single event upsets on integrated circuits), or their effect

can be emulated by software (e.g. by bit-flipping a data word through the

execution of a program). Instead, software fault injection is a much more

difficult matter, because of the great variety and complexity of error causes

and triggering conditions in computer programs.

The most popular and simple technique to emulate software faults is the

direct injection of the errors caused by a software defect. When injecting

errors, the state of the executing program is artificially altered in order to

mimic the effects of the activation of a software fault; the state modification

may concern the data and the instructions handled by the program (because

the most part of programs are not self-modifying, the state manipulation

is usually made on the data). The injection of errors in the data can be

performed on the contents of the memory (e.g. variables, constants, stack),

or it is performed on the parameters of procedure invocations. Common error

models (compared in [JSM07]) for error injection are:

Bit-flips one of the bits representing a value is inverted (e.g. the first of 32

bit representing an integer is modified from 0 to 1);

Data type errors a variable is assigned a “faulty” value in a well-chosen

subset of the values defined by its type (e.g. an integer variable is

assigned to 0);

Parameter fuzzing a variable is assigned to a random value in the set of

values defined by its type (e.g. an integer variable is assigned a pseudo-

random integer value).

In general, in order to obtain an injection representative of real faults,

the memory alteration should be done on a high abstraction level, i.e. we

can modify a data word if it contains the value assigned to a variable defined

60



3. Evaluation of failure detection capabilities of Operating Systems

in the source code of a C++ program, but we do not alter the memory by

randomly choosing a memory location.

These fault injection techniques are often employed for testing of compo-

nents by parameter alteration at the interfaces (e.g. robustness testing, see

figure 1.5), because the reuse of components in COTS-based design exposes

software faults not yet discovered, due to the new environmental conditions

and components interactions [MP05] [MDB+07]. In a COTS operating sys-

tem, the interface to other software components is defined by the SCI (Sys-

tem Call Interface), by which its services are invoked. The robustness of

the operating system to exceptional inputs can be evaluated by alteration of

invocation parameters of system calls by user-space processes, or by ad-hoc

automated tests that try several different combinations of input values (sim-

ilarly to black-box testing). In [JAC+02], experiments using bit-flips and

data type error injection at SCI were made; comparable results were pro-

duced in terms of execution outcomes (e.g. percentage of crashes, or hangs),

although bit-flips required a much larger number of tests than data type, and

therefore a greater amount of time is needed for the campaign. Nevertheless,

the robustness testing at the SCI is unlikely to discover short-term failures

in mature software: our preliminary experiments on recent versions of the

Linux 2.6 kernel family with the Ballista robustness testing suite did not dis-

cover failures among the tested subset of invocations. Moreover, as observed

in [JAC+02], externally injected faults at the SCI are not able to emulate

(i.e. to cause similar effects) internal faults, like faults in device drivers.

Error injection in function parameters was also applied in several work to

emulate internal faults, by targeting the interface between the main kernel

subsystems and pluggable code like device drivers. Compared to SCI-level,

the drivers’ level (namely DPI, Driver Programming Interface) is more prone

to robustness failures, because of implicit assumptions by the kernel on the

drivers’ behavior: to improve performances, most systems avoid the costs

of extensive parameter checking. In [JSM07], different techniques (bit-flips,

data type errors, parameter fuzzing) are evaluated by implementation com-

plexity, execution time, and observed measurements in terms of failures’ im-

pact and error propagation (the degree to which an error spreads other errors

in the system, namely diffusion); it is shown that bit flips are easier to im-
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plement and produce the major number of failures covering more operating

system’s services than data type errors and fuzzing, but it has also the highest

execution time, and the authors point out that there exist robustness faults

discovered by tests not generated by bit-flips; in order to reduce the execution

time while maintaining similar percentages of observed failures and measured

diffusion, an error model is proposed that mixes bit-flips and fuzzing. Data

type produced the minor number of failures, and it requires a preliminary

analysis of interface’s data types in order to establish the subset of tested

values for each type (e.g. boundary values such as 0, 1, 0xFFFFFFFF for

signed 32-bit integers). Fuzzing produces results about diffusion similar to

bit-flip, with a lower number of discovered “breakable” services; it is argu-

mented that random values are far off legal values and then easier to be found

by internal checks, but they can find robustness failures other than the ones

of bit-flips and data type errors; moreover, fuzzing also requires preliminary

work to establish the number of injection cases for each service (by evaluat-

ing the stability of the results when increasing the number of tests), and the

repeatability and the uncertainty of the tests should be quantified in order to

compare the results with different studies [BCFV07]. Instead, bit-flips and

data type errors do not add further uncertainty to results (see below for a

discussion on statistical interpretation of the experiments).

Another approach for software fault injection experiments is based on

mutations of executable code to reflect common mistakes in high level source

code. In [DM06], an analysis of a collection of real software faults on several

programs is conducted to define the constructs (operators) most represen-

tative of frequent software defects; then the G-SWFIT (Generic Software

Fault Injection Technique) is introduced, which allows the identification of

locations where a given fault could exist, searching for known patterns in the

executable binary code, and the following injection of defects by mutating the

low-level instructions in the executable (figure 3.2), based on the statistical

distribution of real faults (figure 3.3).

Differently from error injection, this approach guarantees that errors in-

troduced in the system are caused by actual software defects in the code, and

that injected defect types are representative of common errors occurring in

programs. However, injected defects are permanent faults and not transient
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Figure 3.2: Software fault injection through the G-SWFIT (Generic Software
Fault Injection Technique).

Figure 3.3: Common types of high-level software faults found in several programs
[DM06].
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ones, because they consist of the removal/addition/alteration of operators in

the binary program code: they last for the whole period of an experiment,

and they are triggered each time the fault location is executed; instead, tran-

sient faults represent a major source of failures, and this injection technique

does not take care of reproduce triggers that activate these faults; so, the

applicability of this approach is subordinate to the type of defects the ex-

periment is expected to reproduce. Mutations were applied in dependability

benchmarking [MDB+07] and COTS risk assessment [DM04], in which the

impact of software faults on operating systems is evaluated.

In [CC96], a general approach to error injection is described, in order to

accelerate fault injection experiments while reflecting the field data about

real faults. The data provides:

• a classification of all reported (and fixed) defects by type (the ODC

categories Checking, Assignment, Algorithm, Timing/Serialization, In-

terface, Function) and consequent error type (i.e. single address, single

non-address, multiple, control error, see table 1.4);

• the component (and its internal module) in which each defect was

found;

• the trigger for each error type (normal mode, startup/restart, workload-

/stress, recovery/exception, hw/sw configuration).

The methodology indicates where and when inject an error representing

what fault type (e.g. tables 1.1, 1.2); it consists of the following steps:

• first, the joint probability distribution between faults and errors is esti-

mated (by calculating the relative percentage of each pair fault/error);

• then, for each component and for each module, a list of potential fault

injection locations is obtained (by an automatic parsing tool that clas-

sifies each statement of the code to an ODC defect type category and

an error category);

• a subset of fault locations is randomly chosen, based on the distribution

of field faults in the components and modules, and the joint distribution

of fault/error pairs;
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• an operational profile (a statistical description of system usage) is de-

fined: it reflects the utilization of each system’s service in each trigger-

ing context, for example by weighing the relative occurrence of each

trigger.

In order to correctly emulate software faults (thus excluding hardware

faults), the injection of an error is synchronized to the execution of the code

in the associated fault location; the error represents the activation of a (sup-

posed) fault type in the selected location. In order to shorten execution time,

software engineering techniques are employed to provide inputs to quickly ex-

ecute the code in the fault location (it is similar to the problem of white-box

test coverage), then the error is injected (the injecting procedure is activated

by software or hardware traps) and a workload representing the operational

profile is executed.

The described approach for error injection is general, and it enforces the

representativeness of real software faults (both defect types and trigger are

considered, and hardware faults are factored out) in experiments. Moreover,

the direct injection of errors decreases the duration of the experiment be-

cause it avoids to wait for fault activation (the transition 1 in figure 3.4).

Unfortunately, its applicability is limited by the availability of representa-

tive field data (it is an essential requirement for whatever injection technique

that should be representative), and so in this work it only constitutes an

ideal model to which compare different and more feasible approaches.

Figure 3.4: Evolution of a system subject to the injection of a fault or an error.
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3.2.2 Choice of a model

We now examine the different fault injection techniques described previously,

to select the one that best suits the objective of this campaign, i.e. to evaluate

the ability of the operating system to detect failures due to software defects

present in the operating system itself.

First, we make a clear separation between the component in the System

Under Benchmark (SUB), which is the target of the injection, and the com-

ponent under evaluation (the Benchmark Target, BT); in order to avoid the

problem of evaluating an altered component (e.g. we do not want to modify

its executable code), we inject a fault in a different one, that will propagate

errors to the component being evaluated. Thus, we have to determine in the

operating system a target component of minimal size (to leave the most of

the operating system unaltered by the injection of a fault) and well defined

(the boundaries of the component are explicitly specified).

The device drivers are chosen as Fault Injection Target (FIT). They are

an optimal (and very popular) target for such experiments because:

• they are a well defined and distinct component of the operating system;

• they are a big part of the kernel source code, and a major source of

failures;

• the operating system interact very often with them, and so they grant

an high fault activation rate.

Several works dealt with the impact of failures in device drivers on de-

pendability of operating systems. Indeed, a study on software defects in the

Linux operating system [CYC+01] showed that

• device drivers account for the majority of the code size, and have a

defect rate up to three to seven times higher than the rest of the kernel;

• defects tend to cluster (i.e. several defects occur on the same software

module);

• recently-added files have a defect rate twice than the older ones (i.e.

introduced in past kernel versions).
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Therefore, it is expected that device drivers will continue to represent a

major source of failures, because they are constantly added and updated due

to the typical short life cycle of hardware components.

In the Minix operating system (§ 1.5.2), failure resilience is achieved by

isolating device drivers from other system components: they are executed

within a private address spaces protected by the MMU (Memory Manage-

ment Unit of the processor), thus preventing memory corruption due to driver

misbehavior; they have minimal privileges for accessing to physical (e.g.

DMA, Direct Memory Access) and virtual (e.g. IPC, Inter Process Com-

munication) resources. Moreover, driver encapsulation enables for recovery

procedures that replace a failed driver process by rebooting it [HBG+07];

nevertheless, failure detection is a prerequisite for such mechanism, because

recovery procedures can be applied only when the occurrence of a failure is

noticed by the system, and information is available about the failed compo-

nent.

Other works also recognized device drivers as critical components, and

considered them as a fault injection target for operating systems evaluation:

in [DM02], the G-SWFIT technique is applied to observe the relative oc-

currence of different failure modes in three operating systems (the BTs), by

injecting faults in device drivers (the FITs). In several publications [AAF04]

[KJA+04] [MN07] [JS05], robustness testing is applied at the interface be-

tween device drivers and the kernel to evaluate the ability of the latter to

handle bad inputs, stressful conditions and faulty drivers.

In this work, we adopt robustness testing as a mean to emulate activation

of software faults in device drivers; motivations that encourage this approach

instead of mutations (i.e. G-SWFIT) are:

• The error injected by a robustness test is transient; after that a param-

eter or return value is corrupted, no further error injection is made,

thus leaving the system free to execute and potentially fail. This be-

havior emulates a transient fault, which is unexpectedly triggered by

complex causes and then disappears. When doing mutations, the bi-

nary code is persistently modified, therefore the fault is triggered each

time the mutated code is executed, from the beginning to the end of

an experiment.
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• Robustness testing enables a more thorough and efficient testing of

the possible interactions between the drivers and the kernel. While

mutations are representative of common defects in the source code, it

is not guaranteed that there will be an error propagation to the BT

(i.e. there will be a failure of the OS sub-component), neither that

they will lead to errors representative of defects due to the integration

of drivers in the system (e.g. implicit assumptions on the DPI or on

the hardware) if they are not supported by field data.

• In robustness testing, the trigger that activates the error injection can

be either a temporal or a spatial trigger, and more complex triggering

conditions can be defined.

• The injection of an error by parameter corruption allows to measure

precisely the time in which the error is propagated to the benchmark

target, i.e. the time in which the driver fails. Thus we can measure the

time after that the presence of the error (or a failure caused by it) is

logged by the system.

• The FIT is left unchanged, so it can better reproduce further inter-

actions between the kernel and device drivers after that an error is

injected.

• Error injection experiments are easy to setup and to understand.

Nevertheless, there are also disadvantages that limit the applicability of

results of robustness testing experiments:

• Erroneous inputs adopted by robustness testing are not guaranteed to

be representative of real faults [MBD+06] (i.e. we do not know if a real

residual defect would produce such an erroneous input), and they can

not be directly mapped to software defects (i.e. we can not make as-

sumptions on the particular defect that produces that input). However,

the injection of exceptional inputs can be viewed as the assignment of

a wrong value to a variable, so we assume that they are representative

of the Assignment and Interface ODC classes (these classes are defect
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types of a significant part of real defects, e.g. MVAE, WVAV, MVI,

MVAV, WAEP, and WPFV in figure 3.3);

• Robustness testing does not enable to test the effects of those errors

that propagate in a different way than function parameters or return

value; because the Linux kernel is monolithic, device drivers share the

same address space of other kernel components, and thus it is suscep-

tible of “overlay” errors that corrupt the memory (see [SC91]). Nev-

ertheless, we observed in our experiments that error injection at the

interfaces can produce failure manifestations similar to the ones due to

memory corruption (e.g. if a pointer is changed, the kernel reads the

contents of a wrong memory region, uncorrelated with the correct one).

To define robustness testing experiments, we have to identify the inter-

faces of the BT to other components in the SUB; in the case of the Linux

operating system, we have two distinct interfaces dedicated respectively to

applications running in user-space (represented by the system calls) and to

device drivers (represented by internal kernel functions). Since application-

level stressing using Ballista did not discover robustness failures, we focus on

the interface to device drivers. Both a device driver and the kernel provide

several services in the form of explicitly exported functions, and each one

make use of the services provided by the other: to correctly emulate software

faults activated in the drivers’ code, we consider for error injection the input

parameters of those functions exported by the kernel and invoked by the

drivers, and the return values of the functions exported by the drivers and

invoked by the kernel.

Among the different ways to inject errors through values passed from a

driver to the kernel (bit-flip, data type error, fuzzing), we choose bit-flip:

as described in [JSM07], it is the most performant in terms of number and

severity of identified robustness failures, at the cost of an higher execution

time for experiments, and due to the determinism of injected values it does

not add more uncertainty to the outcome of experiments.
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3.3 Dependability benchmarking of logging

facilities

3.3.1 Definition of the experiments

In order to formalize the experimental assessment of the operating system

under study, we consider the more general framework of dependability bench-

marks; although we do not aim to compare different operating systems by

their detection facilities, the measures of our interest fit well into dependabil-

ity attributes of a system, thus they may be the subject of a dependability

benchmark; therefore we impose to experiments the standard requirements

defined for dependability benchmarks, such as the repeatability of the re-

sults. After the definition of the dependability benchmark, we illustrate it

by describing and executing an implementation for the Linux kernel. In the

following the dependability benchmark is briefly described in respect to the

most relevant aspects impacting on a benchmark (see figure 1.6):

Categorization

• This dependability benchmark is conceived to assess the failure de-

tection capabilities of COTS operating systems, under workload and

faultload conditions typical of a critical context with dependability re-

quirements.

• The benchmark is aimed to COTS system designers interested to de-

velop fault tolerance and recovery strategies (e.g. fault diagnosis).

Measures

• The measures evaluated by the benchmark are the coverage and the

latency of the failure detection mechanisms of the operating system,

as defined at the beginning of this chapter; these measures are related

to dependability and specific of a particular facet of the system, and

should be quantitatively assessed.

• The measures have to be evaluated by experimentation; error injection

is employed to emulate the occurrence of the activation of a fault.
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Experimentation

• The coverage in respect to drivers’ failures (which are represented by

errors injected) is estimated by the ratio between the number of ex-

periments in which the presence of the error is notified, and the total

number of experiments. Instead, the coverage in respect to system-

level failures (see 3.1) is estimated by the ratio between the number of

experiments in which a failure of the system is observed and a log is

produced, and the total number of system-level failures.

• The latency in respect to drivers’ failures is estimated by the interval

that ranges from the time in which the error is injected in the BT, to

the time of the first log notification of that error. Because we often are

not able to quantify the time in which a failure of the system as-a-whole

occurs, we estimate the latency in respect to system-level failures using

the latency in respect to drivers’ failures: it is an upper bound (because

a system-failure is caused by a failure of a driver), and it is tight to the

real latency value (we observed in our experiments that, when there

was a system-level failure, e.g. a crash or an hang, it occurred shortly

after the injection).

• The faultload assumed for experimentation is represented by erroneous

values passed at the interfaces between the FIT and the BT.

This dependability benchmark aims to evaluate the suitability of detec-

tion of an operating system to be employed in a critical context, therefore

a representative workload should be adopted to draw realistic conclusions

from the experiments. In this chapter, we still employ a synthetic workload

in order to simplify the illustration of the implementation of the benchmark;

moreover, these experiments can provide an overview of the kernel’s failure

modes, increasing our understanding of the system, and an initial quantita-

tive evaluation of the failure detection mechanisms.

As we previously stated, robustness testing on the Driver Programming

Interface between the kernel and the drivers constitutes the faultload of the

benchmark, where the FIT is represented by the device drivers, and the

kernel is the BT. Thus, it is necessary to identify all the functions actually
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called by the FIT and the BT when the considered workload is executed; to

shorten the total execution time of the benchmark, the target functions may

be the ones most often invoked.

Once an error is injected, we expect that the SUB will behave in different

ways, that we classify in the following categories:

Crash the operating system is no more able to provide its services to ap-

plications; typically an explicit warning is prompted, and a software

reboot is still possible;

Hang the operating system is running, but does not provide useful work for

the applications; an hardware reboot is needed;

Workload failure an application is not able to conclude its work, or it

produces erroneous results;

No signal no effect on the workload and on the operating system is observed

after the conclusion of the experiment.

It should be observed that, even if an experiment leads to a crash or an

hang, log notifications can still be produced before and during the interrup-

tion of service of the SUB. If the operating system executes for the whole

experiment duration without crashing, the desired behavior is the produc-

tion of a log message about the presence of a problem (the error injected),

whereas it affects or not the workload; if the error goes unnoticed, or the error

is silently tolerated, the experiment highlighted a failure of logging mecha-

nisms (the system did not produce a log message when it should have). We

also observe that a crash or a hang may lead or not to a workload failure

(e.g. the system may crash after that the workload correctly executed); thus

we classify as a workload failure only those cases in which the operating sys-

tem is still working, although its internal error propagated to the workload

through its services’ interfaces.

In addition to the experimental outcomes previously listed, we are also

interested in measuring the time spent to execute the workload, in order to

observe whether the injection of a fault has an effect on the performance of

the workload, as well as on its correctness.
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To emulate software faults in a driver’s source code, errors are injected by

bit-flipping values in procedural invocations in the kernel. The injection is

triggered when the target function is called after a predefined amount of time

since the experiment start time: this is both a spatial and temporal criterion

(the error is injected at the first function invocation, and after a predefined

instant). Because of the complexity of the SUB, we can not guarantee that an

exact sequence of instructions will be executed by the target machine, and so

fault injection experiments are not deterministic; nevertheless, we monitored

the execution of the kernel by tracing relevant internal events timestamps,

and we evaluated the covariance between each temporal sequence of the same

event type: we observed a strong similarity, and thus we argue that our

experiments are statistically reproducible. In order to validate this claim,

experiments should be executed more than one time and have to produce non

contrasting results between different runs; the repeatability of the results of

our experiments is discussed in-depth in section 3.3.4. It should be noted

that neither a spatial-only injection criterion (a fault is triggered when a

particular instruction is executed) guarantees determinism because of the

un-controllability of the execution flow.

3.3.2 Experiments setup

We consider a workload that makes use of both non-hardware and hardware

related services (e.g. I/O requests to disks, network cards) , in order to

reproduce stressing work conditions and to stimulate different kernel entry

points. The experimental scenario is composed by a server and a client

machine connected by a local area network: the server constitutes the SUB,

in which the Linux kernel (the BT) is executed; its configuration is described

in table 3.1. The Ballista testing tool (included in the Linux Test Project

suite, [12]) is used as application-level workload: it is composed of some C++

programs that invoke system calls with predefined input parameters, the

GNU C compiler (the test suite is partially re-compiled for each system call

tested) and other UNIX utilities. Because of the brevity of each experiment,

only a narrow subset of system calls is tested by Ballista: remember that we

do not execute a system call robustness test, but we conduct fault injection
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inside the operating system, so any application that frequently invokes kernel

facilities (in particular, in order to increase the fault activation rate, kernel

services related to fault-injected parts have to be invoked, i.e. device drivers)

is sufficient for our purposes; if it is required an evaluation of how the system

will behave under faults in a real context, a more realistic workload is needed

(e.g. the system will not be affected by a fault occurred in a kernel component

never activated; in other words, the fault is not triggered).

CLIENT

HTTP CLIENT

DRIVER

INTERFACE

SYSCALL

INTERFACE

SERVER

LINUX

HTTP SERVER O.S. STRESS

DRIVER DRIVERDRIVER

ERROR

INJECTION

WORKLOAD

TARGET

Figure 3.5: Setup of error injection experiments.

Table 3.1: Hardware and software configuration of the System Under Benchmark,
employed for error injection experiments (HP xw4400 Workstation).

CPU Intel CoreTM 2 Duo E6600 2.40GHz

RAM 4 GB

Disk controller Integrated Intel Corporation 82801GR/GH

SATA 3 Gb/s interface

Hard disk 250 GB SATA 3 Gb/s NCQ (7200 RPM)

Network card Integrated Broadcom 5755 NetXtreme Giga-

bit Ethernet PCI Express

Linux kernel version 2.6.21

Linux distribution Red Hat Enterprise Linux AS release 4 (Na-

hant Update 2)

Apache webserver 2.0.52

Ballista (LTP) snapshot 20070630

SystemTap snapshot 20070721
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Moreover, the application workload is composed by the Apache webserver;

a client machine downloads several files from the server (about half a giga-

byte), thus stressing the I/O and network subsystems; again, a more realistic

network workload should be employed to assume the results as representa-

tive of the system in the operational phase. To verify the correctness of the

workload execution, we inspect the Ballista test logs to identify robustness

failures, and we make a checksum verification on data downloaded by the

HTTP client; if an error is found on application logs or by a checksum, or

if the forced or wrong exit of a process occurs, the experiment’s outcome is

classified workload failure.

We choose as FIT for the dependability benchmark the device drivers of

the available serial ATA disk and Ethernet network card: they are called ahci

and tg3 respectively; moreover, the libata component (a group of common

routines for serial ATA drivers) is considered as part of the disk driver. In the

following, we are going to refer to them as the sata driver and the network

driver, respectively.

Device drivers interact with other kernel components through procedure

invocations; they may (but do not have to) be compiled as kernel modules,

and loaded at runtime. The interface between kernel and drivers is made

by the set of functions defined by the drivers and called by the kernel, and

vice versa. In the Linux 2.6 kernel tree, the functions of the kernel that

can be called by a module (and vice versa) should be explicitly exported

to be correctly resolved and linked; in some cases, there are functions not

explicitly exported that are invoked in a component by first retrieving a

pointer to the function’s code (e.g. the pointer of a routine for I/O requests

handling, defined in a device driver, is passed to the kernel when the driver is

initialized; when the kernel has a request to dispatch to the driver, it invokes

the function which that pointer refers to).

To identify locations for error injections, the functions constituting the

interface between the kernel and the target device drivers should be iden-

tified (figure 3.6). To find invocations of kernel’s functions by the driver,

we employed static source code analysis on exported function symbols; to

find invocations of driver’s functions, we considered both static analysis and

dynamic probing of all the functions defined in the driver, because of the
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pointer-based invocation mechanism employed by the kernel.

Interface (DPI)

Driver Programming

Functions exported by

the kernel to drivers

(a driver passes a wrong

parameter)

Functions exported by

a driver to the kernel

(a driver returns a wrong

value)

System Call

Interface (SCI)

Driver Driver Driver

App.App.App.

Operating System

...

...

Figure 3.6: Interfaces between the kernel and device drivers, at which errors are
injected.

After the injection locations were found, they should be monitored during

the execution of the selected workload; the functions that will be the target

of the injections are chosen such that they account for the most part of the

invocations, and that the total number of injection experiments is significant

(e.g. roughly a thousand). In our implementation, 544 bit targets in 17

parameters of 10 functions were identified for the network driver, and 160

bit targets in 5 parameters of 5 functions for the sata driver. Finally, error

injection experiments can be accomplished by targeting selected functions.

In order to implement function monitoring and error injection, we em-

ployed dynamic probes: they are already provided by the mainline kernel

(see KProbes and SystemTap, § 2.5), they are a flexible, generic and simple-

to-use tool, and they do not require modifications to the source code of the

target modules, thus speeding up the execution of experiments and reducing

the intrusiveness of the experiment setup in the SUB.

In both injection (see listing A.1) and monitoring (see listings A.2 and

A.3), dynamic probes were placed at the entry points of kernel’s functions

called by a module, and at the exit points of module’s functions called by

the kernel. When a probe is hit by the execution flow, a check is made to

ensure that the kernel function was actually called by the target module in

the first case, or that the module function was not called by the module itself

in the second case: to do this, the kernel stack is inspected and the caller of
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the probed function is located using the return address (see Appendix A for

a detailed description).

To measure the latency of logging mechanisms, dynamic probing was em-

ployed again (see listing A.5); a KProbes module (implemented with System-

Tap), probes for invocations of the sys_write system call by the user-space

process syslogd, which collects and stores log messages from the kernel and

other parts of the operating system. It should be noted that the KProbes

modules for injection and for measurements can execute concurrently in ker-

nel space. The timestamp of the write is then saved on the disk. Although

we can obtain timestamps in nanoseconds, we consider only digits up to mi-

croseconds, because of the latency between the issue of a software interrupt

and its handling. The log latency is given by the difference between the

injection timestamp (saved by the injector module) and the logging times-

tamp. By using the same dynamic probing mechanism for error injection

(and timestamping) and log timestamping, we reduce the alteration to the

estimated log latency introduced by the software interrupt latency (the dif-

ference between these two measurement should mitigate such alteration).

Because syslogd and the KProbes modules are part of the SUB, they

are both exposed to error propagation, therefore it is not guaranteed that

an error notification by the kernel will be logged, or that the logging latency

will be available. In the latter case, we estimate the latency using the times-

tamp entries in syslogd’s messages, with a lower precision (log messages

are timestamped in seconds); in general, an approximation should be con-

servative and should not underestimate the latency and the coverage (e.g. it

should round up to the nearest integer rather than to round down). More-

over, it is important to not consider those log messages not related to failures

when computing log coverage and latency (for example, messages inherent

to ordinary system maintenance such these produced by the crond daemon).

In order to prove the repeatability of the benchmark, it should be ex-

ecuted two or more times; the experiment is considered repeatable if its

results (execution outcomes, log coverage and latency, and experiment du-

ration) are very similar between repetitions. To ensure such property, the

experiments should be completely automated (e.g. no human intervention

should be scheduled); in our benchmark implementation, all the experiments
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are automatically executed by a script running after the boot sequence (the

only human intervention required is an hard reboot in the case of a hang

outcome).

3.3.3 Results

We here summarize the results obtained by the dependability benchmark

execution, and defined in the previous subsection. In figures 3.7a and 3.7b,

the percentages of the outcomes observed for the workload and the operating

system are represented. The first consideration is that in the most of cases the

injection of an error did not lead to an observable failure: three explanations

of this outcome are:

• The error was tolerated by the operating system, e.g. it was identified

by an internal check or it was overwritten (transitions in the ”good“

state in figure 3.4);

• The error is dormant and was not activated during the experiment,

and thus it can lead to failures in the future (the ”latent error“ state

in figure 3.4);

• The operating system failed in providing a correct service to applica-

tions, but the workload was able to tolerate the failure.

In a small number of cases, we obtained workload failures when injecting

errors in both drivers. In these cases, the operating system was still working

and the workload was completed, but an erroneous result was produced (e.g.

process killing or exit, errors in application logs or found by a checksum); in

particular, we observe that in some cases the robustness test at the system

calls (i.e. Ballista), which in normal conditions does not discover robustness

failures, fails when an error is injected at the drivers’ interface. Although

the occurrence of incorrect workload result is unlikely, it is an evidence that

an unsafe behavior of the operating system is possible in the presence of an

error state; nevertheless, further experiments with a workload and a faultload

representative of a critical context should be executed to draw conclusions

about the safety attributes of the operating system.
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(a) network driver.

(b) sata driver.

Figure 3.7: Outcomes observed after error injections at the device driver inter-
face.
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In figures 3.8a and 3.8b, the estimated coverage (in respect to drivers’

failures) of the operating system logs is displayed. We observe that for both

the drivers there were a majority of cases in which no log at all is produced.

Moveover, error injections in the sata driver lead to a much higher detection

percentage than the network driver; it can be explained by the fact that

more numerous and structured kernel subsystems depend on the disk driver

(e.g. the SCSI layer – the SATA port is seen as a SCSI bus –, the Block

I/O layer and the filesystem), and thus a more strict checking is made on the

operations based on that driver.

(a) network driver.

(b) sata driver.

Figure 3.8: Log coverage measured after error injections at the device driver
interface.
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We further differentiate between cases in which the log latency was low

(i.e. less than 1 second), and cases that lead to an high log latency. In fact,

for both drivers there is a remarkable subset of cases in which the latency is

very low (ranging from a few of milliseconds to hundreds of milliseconds); it is

due to the fact that some data exchanged with device drivers is immediately

checked by the kernel, and therefore the log latency is composed for the

most part by the I/O delay needed to write the log to the disk. In the rest of

cases, the error was notified much later (the order of magnitude of this delay

is tenths of seconds), and log entries were referred to several parts of the

kernel code and to the workload (e.g. a process was killed), thus we conclude

that the errors propagated in different components of the SUB. In table 3.2

the measured mean latencies for both drivers are quantified.

Table 3.2: Measured log latencies for the Linux kernel after error injections
representative of faults in two device drivers. We differentiate between low (i.e.
less than 1 second) and high latencies.

network sata

Mean low latency 0.104590 s 0.004791 s

Mean high latency 36.833334 s 29.627197 s

In figures 3.9a and 3.9b, it is shown the log detection coverage restricted

to system-level failures, which is obtained by only considering experiments

in which there was a failure of the system as a whole (i.e. the crash, hang

and workload failure outcomes, accounting for 29.5% and 13.1% of network

and sata drivers’ failures, respectively). In the case of the injections at the

network driver interface, the system-level coverage is slightly greater than

drivers’ failures coverage, because those experiments which were logged, did

often lead to system-level failures; nevertheless, the coverage still results

much less than the percentage of non-logged experiments. In the case of the

sata driver, the system-level coverage is significantly smaller than drivers’ fail-

ure coverage: a remarkable amount of system-level failures was not logged.

This observation on the system-level coverage implies that the operating sys-

tem has an insufficient ability to log those failures which were not tolerated,
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rather than to log tolerated ones.

(a) network driver.

(b) sata driver.

Figure 3.9: Log coverage for system-level failures measured after error injections
in the device driver interface.

Finally, we report on measured execution times for the network workload

(i.e. the time spent by HTTP clients downloading); these values are listed

in table 3.3. We observe that in the case of the network driver there was

not a significant deviation from the non-faulty behavior, but in the case of

the sata driver there were several cases in which the download time consider-

ably increased (about +50% compared with non-faulty behavior), and thus

a performance decrease can be considered as a symptom of the presence of

an error.
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Table 3.3: Total download times measured by the client in the case of no injection
and injection in the drivers respectively (cases in which downloads were interrupted
by a system crash are not considered).

no fault network sata

Mean 62.5625 s 61.765073 s 66.871486 s

Std. dev. 0.957427 s 1.086329 s 15.854937 s

3.3.4 Statistical validation

As discussed in previous sections, the experiments defined in the dependabil-

ity benchmark are affected by uncertainty, i.e. the outcome of an experiment

may vary between subsequent repetitions, due to the high complexity of the

considered system. Therefore, the repeatability property of the dependabil-

ity benchmark should be verified, so that obtained results can be trusted by

a third party, and that the methodology can be used as a common way for

users to evaluate logging facilities. A dependability benchmark is considered

repeatable if it guarantees statistically equivalent results when it is run more

than once in the same environment [MKA+01].

In order to evaluate the repeatability property, the experiments previ-

ously described were repeated for a second time. The observed distributions

for outcomes (figure 3.7) and logging of tests (figure 3.8) are shown in tables

3.4 and 3.5. The χ2 hypothesis test on the distributions of the two sets of

experiments (Set 1 and Set 2, respectively) was made, in order to confirm

the following null hyphotesis :

The statistical distributions of the results are independent from the con-

sidered set of experiments.

An hypothesis test requires that a test statistic (i.e. a function f(x) of the

experimental results x) is defined; then, experiments are executed, and the

value of the test statistic is computed from the obtained statistical sample.

If the value has a very low probability of occurrence if the null hypothesis
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is true, then we can reject the null hypothesis because it is contradicted

by an experimental evidence. The significance level, indicated with 1 − α,

is the probability to correctly reject the null hypothesis if the value of the

test statistic occurs with probability α (e.g. α = 0.05). Instead, we are

reasonably sure that the null hypothesis is true if it can not be rejected, with

an α low enough.

In our case, we have to verify that the probability that an experiment falls

in one of a set of categories (crash, hang, workload failure, and no signal for

outcomes; low latency, high latency, and no log for logging) is independent

from the set of experiments (Set 1 or Set 2 ). As prescribed by the χ2

hypothesis test, we use as test statistic the following:

K =
M∑
i=1

N∑
j=1

(Oij − Eij)
2

Eij

(3.1)

in which we assumed:

• M is the number of categories (4 for outcomes, 3 for logging);

• N is the number of statistical samples (the 2 sets of experiments);

• Oij is the number of experiments of the set j which fall in the ith

category;

• Eij is the expected number of the experiments for the ith category and

the jth set, given that the null hypothesis is true.

The values Eij are the joint probability1 of occurrence of the ith category

and of the jth set; because we made the hypothesis that sets and categories

are mutually independent, then Eij is the product of the marginal probabilities

of i and j. For example, in table 3.4a, the probabilities of the crash category

and the Set 1 are 337
1088

and 544
1088

, respectively; then, the expected number of

experiments in Set 1 which lead to a crash is 1088 · 337
1088
· 544

1088
= 168.5 (table

3.4b), which is compared to the observed number 165 (table 3.4a).

1To be more precise, the joint probability is the ratio Eij/n, where n is the total number
of experiments; instead, Eij is the absolute number of experiments of the pair set/category.
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Table 3.4: χ2 test for statistical reproducibility of outcomes distributions.

(a) Observed distribution for tests on the network driver
(ν = 3, K = 2.50, χ2

0.05 = 7.82).

crash hang w. failure no signal

Set 1 165 25 8 346 544

Set 2 172 23 3 346 544

337 48 11 692 1088

(b) Expected distribution for tests on the network
driver.

crash hang w. failure no signal

Set 1 168.5 24 5.5 346

Set 2 168.5 24 5.5 346

(c) Observed distribution for tests on the sata driver (ν =
3, K = 2.37, χ2

0.05 = 7.82).

crash hang w. failure no signal

Set 1 23 14 1 122 160

Set 2 15 17 2 126 160

38 31 3 248 320

(d) Expected distribution for tests on the sata driver.

crash hang w. failure no signal

Set 1 19 15.5 1.5 124

Set 2 19 15.5 1.5 124
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Table 3.5: χ2 test for statistical reproducibility of logging distributions.

(a) Observed distribution for tests on the network driver
(ν = 2, K = 6.44, χ2

0.05 = 5.99).

low latency high latency no log

Set 1 14 12 518 544

Set 2 4 17 523 544

18 29 1041 1088

(b) Expected distribution for tests on the network
driver.

low latency high latency no log

Set 1 9 14.5 520.5

Set 2 9 14.5 520.5

(c) Observed distribution for tests on the sata driver
(ν = 2, K = 0.48, χ2

0.05 = 5.99).

low latency high latency no log

Set 1 60 30 70 160

Set 2 58 35 67 160

118 65 137 320

(d) Expected distribution for tests on the sata driver.

low latency high latency no log

Set 1 59 32.5 68.5

Set 2 59 32.5 68.5

86



3. Evaluation of failure detection capabilities of Operating Systems

Because the results of an experiment are random variables, then the test

statisticK is also a random variable. It can be shown that, for an high enough

number of experiments, K represents a χ2 random variable with (N − 1) ·
(M − 1) degrees of liberty, of which we known the probability distribution.

Then, if a given experiment produces K = k such that P(K > k) 6 α, then

we reject the null hypothesis with a significance level of 1− α.

In all cases of tables 3.4 and 3.5 (except for logging for the network

driver), the null hypothesis can not be rejected, with a significance level of

0.95, because we have that K < χ2
0.05 in each case; this means that the

hypothesis of independence (and therefore the repeatability of the results)

is reasonably verified. Instead, in the case of logging for the network driver,

the hypothesis of independence can be rejected with a significance level of

0.95, because K = 6.44 > χ2
0.05 = 5.99 (table 3.5a). Nevertheless, because

K = 6.44 ' χ2
0.04, the hypothesis can not be rejected with a significance level

of 0.96. This non negligible difference between the observed and the expected

distributions is due to the portion of experiments which were classified as low

latency in Set 1, and as no log in Set 2 (instead, there were observed crashes);

because of the small number of cases of low latency for both sets, the χ2 test

was noticeably influenced by this difference. Moreover, the small number

of experiments for the low latency category weakens the initial assumption

about the probability distribution of K.

However, if the categories low latency and high latency are merged in

one (table 3.6), the coverage distribution results independent from the set in

the case of logging for the network driver, because the null hypothesis can

not be rejected. Therefore, we conclude that the coverage is reproducible,

although it was not possible to reproduce the sub-categories low latency and

high latency.

We can not make assumptions on the probability distributions of the sta-

tistical means used for evaluation of the mean low and high latencies, because

we do not know the distribution of the single experiment, and the indepen-

dence2 between experiments does not seem to hold (because, as we will see

2The hypothesis of independent and identically distributed random variables is required
for the Central Limit Theorem to assume that the mean value of several experiments is
normally distributed.
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Table 3.6: χ2 test for statistical reproducibility of coverage distributions.

(a) Observed distribution for
tests on the network driver
(ν = 1, K = 0.56, χ2

0.05 =
3.84).

log no log

Set 1 26 518 544

Set 2 21 523 544

47 1041 1088

(b) Expected distribution for
tests on the network driver.

log no log

Set 1 23.5 520.5

Set 2 23.5 520.5

(c) Observed distribution for
tests on the sata driver (ν = 1,
K = 0.11, χ2

0.05 = 3.84).

log no log

Set 1 90 70 160

Set 2 93 67 160

183 137 320

(d) Expected distribution for
tests on the sata driver.

log no log

Set 1 91.5 68.5

Set 2 91.5 68.5
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in section 5.4, experiments on the same parameter have an high probability

to produce the same outcome). Therefore, we do not apply an hypothesis

test to evaluate the reproducibility of measured latencies; nevertheless, the

latencies are not very different in terms of relative differences (figures 3.7 and

3.8), except for network driver’s mean low latency, of which the cases were

too few to draw a reliable estimation (see table 3.5a). Therefore, we conclude

that also latency was reproducible across different sets of experiments.

Table 3.7: Comparison between mean low latencies for different experiments sets.

Set 1 Set 2 Difference

network driver 0.104590 s 0.067330 s -35.6 %

sata driver 0.004791 s 0.004344 s -9.3 %

Table 3.8: Comparison between mean high latencies for different experiments
sets.

Set 1 Set 2 Difference

network driver 36.833334 s 38.958075 s +5.8 %

sata driver 29.627197 s 29.317801 s -1.0 %

3.4 Conclusions

In this chapter, we cope with the problem of the assessment of the failure de-

tection ability of commodity operating systems, in terms of log coverage and

latency. We first discuss different ways to artificially accelerate the activation

of software faults in operating systems by emulation. In particular, we take

in account the G-SWFIT technique and the robustness testing approach, and

we argue that the latter is more suited for our purposes.

Thereafter, we propose a dependability benchmark specification based on

robustness testing at the interface between device drivers and the operating
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system kernel, in which an error is injected by bit-flip of values exchanged

between a device driver and the kernel. This benchmark is then implemented

for the Linux operating system, and obtained results are reported.

The experiments highlighted that for the majority of injected errors there

were not logs that notified the presence of the error in the operating system

(the estimated coverage is less than 50%). Moreover, whenever logs were

emitted there was a non negligible part of cases in which the measured la-

tency was very high (more than 1 second), leading to error propagation and

incorrect or missing information about the faulty component, and several

non-logged injections lead to severe system-level failures. Thus, more effec-

tive mechanisms for error logging are needed in order to increase the detection

ability of the operating system, that can be the basement for fault tolerance

and recovery mechanisms.
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CHAPTER 4

A technique for failure detection

Much of the excitement we get out of our work is
that we don’t really know what we are doing.

Edsger W. Dijkstra

4.1 Introduction

In the previous chapter, the Linux operating system’s robustness, in respect

of faults in its device drivers, was evaluated. Moreover, it is pointed out

that in the majority of cases there were not log entries with a description of

the problem, or at least a hint about its presence in the system; when log

entries were produced, a significant amount of time often elapsed from the

activation of the fault. In the following, we introduce a new approach for

the detection of failures, based on the monitoring of the activities of device

drivers, to produce useful hints for off-line and on-line analysis of outages’

causes and to offer support for fault treatment techniques. The proposed

approach is based on empirical observations of the behavior of the system

under faults, using the data collected during error injection experiments.
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4.2 Considerations on experimental data

In the implementation of the dependability benchmark described in the pre-

vious chapter, we also included a kernel monitoring module for tracing I/O

activities (events) of the network and disk devices drivers (see listing A.6),

in terms of type and time of transferred packets and data blocks read/writ-

ten from/to disks. As highlighted in table 3.3, a performance degradation

was actually observed in several cases; there were cases in which the sys-

tem apparently behaved well (e.g. the data transmitted by the web server

was not corrupted, and workload executed without errors), although the test

duration was higher than normal (e.g. the workload terminated after 90

seconds, compared to a duration of about 60 seconds when no error was in-

jected). When workload execution time was significantly greater, the traces

of drivers’ events also differed from the ones in non-faulty conditions; in

particular, the throughput of events’ occurrences (defined as the ratio be-

tween the number of events occurred in a time unit, and the time unit itself)

experienced sudden changes during the execution, after that an error was

injected.

In figures 4.2 and 4.3, we observe non-negligible time periods in which

drivers activities were stall (several consecutive throughput samples are equal

to zero): there are abrupt decreases of the throughput after the injection of

an error, followed by other changes (we refer to them as throughput losses

and peaks); such behavior was not observed when no errors were injected

(figure 4.1), in which drivers activity goes uninterrupted until the workload

completion.

In order to define an approach for the detection of system’s failures, we

investigated the relationship between the correctness of system’s behavior

and its performances. In the following, we are going to:

• Make further fault injection experiments, to find the differences in the

system’s behavior when a failure exists, compared to the behavior in

absence of failures;

• Formally express those differences;

• Explain how differences can be highlighted at run time, although the
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(a) Packet transmission and re-
ception.

(b) Block reads and writes.

Figure 4.1: Plots of throughput during the correct workload execution (sample
period of T = 0.1 s).

(a) Packet transmission and re-
ception.

(b) Block reads and writes.

Figure 4.2: Plots of throughput during an error injection experiment in the disk
device driver (sample period of T = 0.1 s; the error was injected after about 10 s).
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(a) Packet transmission and re-
ception.

(b) Block reads and writes.

Figure 4.3: Plots of throughput during an error injection experiment in the net-
work device driver (sample period of T = 0.1 s; the error was injected after about
10 s).

correct behavior is not known a priori (the actual behavior is compared

to the estimated expected behavior);

• Design an algorithm that detects such differences by on-line monitoring

of system’s execution.

To perform fault injection experiments, we used the fault injection frame-

work included in the Linux kernel [29] [7], for injection of software imple-

mented faults (SWIFI), that could be representative of hardware faults; an

error was injected in the I/O block requests to the disk, by forcing the return

of an error code (-EIO) from the generic_make_request() routine in the

Block I/O layer (the kernel subsystem interposed between filesystems and de-

vice drivers), to emulate the occurrence of a transient fault in the disk (after

the failure of a request, the following ones are correctly managed). Com-

pared with software faults injected in the previous dependability benchmark,

those faults are simpler and produce more predictable effects: they cause the

immediate failure of a single I/O operation, thus the system is only affected

at the time of injection, and the effects of error injection are immediately

observable.
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We injected ten consecutive request failures during the execution of the

same workload of section § 3.3.2, at a predefined time, although the fault is

activated only after the execution of the instrumented routine; the targeted

requests occurred within a time interval of 0.1 seconds. We repeated the same

experiment 25 times with fault injection, and 25 times without injections; we

paid attention to not introduce significant differences between the faulty and

non-faulty scenarios: the fault injection framework was activated in both

cases, and the same user-space scripts were executed (they did not produce

any effect in the latter case), in order to avoid systematic measurement errors.

Several significant events of the operating system were monitored (using the

LKET tapset library, § 2.5), together with the exact activation time of the

instrumented routine.

Finally, we evaluated the mean and the standard deviation of the number

of monitored events in time periods immediately following the activation of

the faults. Among the events defined in the tapset library, we noticed an

alteration in events related to I/O and device drivers. In figures 4.4, 4.5, and

4.6, it is showed the mean value and the standard deviation of those events

for faulty and non-faulty experiments, evaluated in different time periods.

As expected, we see that the mean values differ within short periods

(expressed as difference in percentage), and that faulty experiments show a

greater variability (represented by a greater standard deviation), in particular

for period lengths of 0.1 and 0.5 s; for example, in figure 4.4, there is a relative

difference of 30% (figure 4.4e) between the mean number of transmitted

packets in correct (figure 4.4a) and faulty executions (figure 4.4c), for a time

window of T = 0.1 s. Thus:

Observation 1 : there exists a difference in terms of sampled throughput

from the expected behavior when a failure occurs.

In this chapter, we refer to the expected behavior as the throughput most

likely to be observed in a particular time period, if the system behaves cor-

rectly; the expected behavior is estimated by the mean value from several

correct executions. In our experiments, the observed throughput differed

from the expected one when a failure was induced. A failure may cause such

differences because of operation repetitions (e.g. an user application repeats
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(a) Means for correct executions. (b) Standard deviations for correct
executions.

(c) Means for faulty executions. (d) Standard deviations for faulty
executions.

(e) Difference in percentage be-
tween correct and faulty means.

(f) Difference in percentage between
correct and faulty standard devia-
tions.

Figure 4.4: Means and standard deviations of packet transmission for different
period lengths (in seconds) after fault injection.
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(a) Means for correct executions. (b) Standard deviations for correct
executions.

(c) Means for faulty executions. (d) Standard deviations for faulty
executions.

(e) Difference in percentage be-
tween correct and faulty means.

(f) Difference in percentage between
correct and faulty standard devia-
tions.

Figure 4.5: Means and standard deviations of packet reception for different period
lengths (in seconds) after fault injection.
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(a) Means for correct executions. (b) Standard deviations for correct
executions.

(c) Means for faulty executions. (d) Standard deviations for faulty
executions.

(e) Difference in percentage between
correct and faulty means.

(f) Difference in percentage between
correct and faulty standard devia-
tions.

Figure 4.6: Means and standard deviations of block reads and writes for different
period lengths (in seconds) after fault injection.
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the access to a resource, or a reliable protocol such as TCP retries the trans-

mission of a packet), waits for timeouts, exception handling, aborts, and so

on. Moreover, the mean value for correct behavior within T = 0.1 s is well

approximated by the mean value evaluated within T = 5 s (figure 4.4a); this

property leads to the following statement:

Observation 2 : the expected behavior can be approximated by averaging

the observed behavior in a longer period, in which the workload does

not vary noticeably.

Because we make the failure disappear after the injection (subsequent

I/O requests are correctly executed), the mean values observed in faulty and

non-faulty executions for a time window of T = 5 s (figures 4.4a and 4.4c)

are very close, therefore:

Observation 3 : Even when there is a failure, the expected behavior can

be approximated by the average throughput in a time period including

non-faulty behavior.

If we can compare the observed throughput with the expected behavior

for that time period, we will point out a difference between them; because

we know that a significant difference can be probably caused by a failure,

this is a way by which we can detect the presence of a failure. Nevertheless,

we do not know a priori the expected behavior; if the previous statements

hold, we can approximate it by the throughput measurements collected in

time periods next to the period in which a failure occurs:

Observation 4 : the expected behavior can be approximated by the observed

behavior under failure, if it is evaluated in a time period long enough.

Using the considerations made in this section, we are going to define

a technique for failure detection, based on hypotheses that hold in a large

amount of cases, that can be used in a feasible way for on-line monitoring of

critical systems, in which the timely detection of the presence of a problem

is a key prerequisite to ensure an high degree of reliability and safety.
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4.3 Proposed algorithm

In order to exploit the knowledge about the behavior of the system under

failure, we first introduce a set of quantities to formalize the previous observa-

tions. We model the I/O throughput (for both disk and network devices, and

input and output data), sampled at regular time intervals, as a discrete-time

random process. A random process is a real-value function x(t, ω), where ω

is the outcome of a random experiment, and t is the independent variable

representing the time. The random process can be viewed as a collection of

deterministic time functions x(t, ωi) (namely, realizations of the random pro-

cess), corresponding to various executions ωi of the experiment; alternatively,

we can view the random process as a collection of random variables X(ti),

corresponding to each time value ti; if t ∈ Z, it is a discrete-time random

process. For a more rigorous and in-depth description of random processes,

see [PP01] and [PS01].

Figure 4.7: A discrete-time random process.
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A process x(t, ω) is defined stationary if it meets the following conditions:

mX(t) = E[X(t)] is independent of t (4.1)

RX(ti, tj) = E[X(ti)X(tj)] depends only on tj − ti (4.2)

In addition to the statistical average mX(t) associated with each random

variable X(t) of the process x(t, ω), we can find the time average of each

realization x(t, ωi), defined as:

〈x(t, ω)〉i = lim
N→∞

1

N

+N∑
n=−N

x(n, ωi) (4.3)

In general, the real quantity 〈x(t, ω)〉i is dependent on the realization ωi

considered, but it is independent of t. A stationary process is also said to be

ergodic if, for each realization x(t, ωi) and all functions g(x):

〈g(x(t, ω))〉i = E[g(X(t))] (4.4)

The ergodicity is a very strong property implying that all time averages

are equal to the statistical average E[g(X(t))]; it is supposed that the process

is stationary, so the statistical average is a constant real value. Because the

condition for ergodicity must hold for each g(x), we have:

〈x(t, ω)〉i = E[X(t)] = mX (4.5)

〈(x(t, ω)−mX)2〉i = V ar[X(t)] = σ2
X (4.6)

A consequence of ergodicity is that we can measure various statistical av-

erages, such as mean and variance, by looking at a single realization x(t, ωi)

of the process and evaluating its time averages, instead of considering a large

number of realizations and averaging over them. If we assume the hyphote-

sis of stationarity and ergodicity for our processes representing the sampled

throughput, we have that the mean value and variance of the throughput

can be evaluated by time-averaging a large number of throughput samples;
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we will describe later how hypotheses can be relaxed to make the approach

more feasible.

We now apply our first consideration about observed behavior under fail-

ure (there exists a difference in terms of sampled throughput from the expected

behavior when a failure occurs). The throughput during correct execution

(the expected behavior) is represented by mX ; the actual throughput sam-

pled in the time period ti is the random variable X(ti). Therefore, we assume

that the probability that the throughput X(ti) is different than mX , and in

particular it is greater if a failure occurred ; mathematically, we state this

hyphotesis by writing that there exists an h ∈ R such that:

P(|X(ti)−mX | > h | Failure) > P(|X(ti)−mX | > h) ∀h > h (4.7)

For the sake of brevity, we refer to the event “|X(ti) − mX | > h” as

“ThDiff ” (Throughput Difference). Using the Bayes’ Formula

P(A|B)P(B) = P(B |A)P(A) (4.8)

we can write:

P(Failure | ThDiff ) =
P(ThDiff | Failure)

P(ThDiff )
P(Failure) (4.9)

Therefore, using the hyphotesis (4.7), we conclude:

P(Failure | ThDiff ) > P(Failure) (4.10)

From (4.10), it follows that the probability of failure occurrence increases

if we experience a throughput difference; so, we consider the event “ThDiff ”

as a failure symptom, and in our algorithm we detect a failure by evaluating

this event. Of course, the event does not imply that a failure actually oc-

curred, but that there is an higher probability, and we rely on an external

mechanism to establish if and what failure occurred; such decision can be

made on the basis of the output of several, different failure detectors. Other

possible conditions are:

• A failure occurred, but there was not a throughput difference from the

expected behavior (false negative);
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• A failure did not occur, although there was a throughput difference

(false positive).

False Positive False Negative

Correct

Failure

Detection

Throughput
Difference

Figure 4.8: Possible outcomes for the failure detector.

The conditional probabilities P(Failure | ThDiff ) (correct detection),

P(Failure | not ThDiff ) (false negative) and P(ThDiff | not Failure) (false

positive) depend on the choice of the h threeshold. Because we do not know

the joint probability distribution of the random process, we also do not know

the ĥ value that provides the desired probabilities of correct detection, false

positive and false negative.

If we assume that the ratio P(ThDiff | Failure)
P(ThDiff )

increases with h (this follows

by supposing that a very large throughput variation from the expected one is

probably caused by a failure, and it is very unlikely produced by an healthy

behavior), we can achieve an high probability of correct detection by increas-

ing h; by doing so the probability of a false positive is reduced, but we also

increase the probability of a false negative. Because we can quantify those

probabilities only through experiments, the best trade-off is achieved by tri-

als. It should be observed that a throughput difference can be produced by

a variation of the workload (e.g. the creation of a process that makes several

I/O requests), that also causes a change of mX ; for now, we assume the hy-

photesis of stationarity (the mean mX is constant for each time ti), and we

will address this problem later.
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In order to choose a value of h that guarantees a fixed level of confidence,

we consider the Chebyshev’s inequality, which defines a lower bound for the

probability of the ThDiff event:

P(|X(ti)−mX | > h) 6
σ2

X

h2
(4.11)

By assigning h = kσX , the (4.11) can be written as:

P(|X(ti)−mX | > kσX) 6
1

k2
(4.12)

The expression (4.12) states that, for any probability distribution of

X(ti), the probability of a throughput difference is no greater than 1/k2;

for example, X(ti) falls outside of [mX − 2σX ,mX + 2σX ] with a probability

lower than 0.25, and outside of [mX−3σX ,mX +3σX ] with a probability lower

than 0.11. Therefore, we can reduce the probability of a throughput differ-

ence (and so the probability of a false positive) by choosing a proper value of

k. The choice of kσX as threeshold makes the confidence level of correct de-

tection (1/k2) independent from the probability distribution of X(ti) (which

is unknown). The definition of the event “ThDiff ” used by our algorithm is

then

|X(ti)−mX | > kσX (4.13)

At the time ti, the throughput is sampled, and we refer to the actual

value assumed by the random variable X(ti) as xi. In order to check if

the event (4.13) occurred, we have to estimate the mean and the standard

deviation of X(ti), represented by mX and σX . Until now, mX and σX

were constant quantities for all ti, because we have made the assumption of

process’ stationarity; moreover, if the ergodicity hyphotesis holds, mX and

σX at ti can be evaluated by using the time averages (4.5) and (4.6).

Nevertheless, exact calculation of those averages is not feasible because

it requires an infinite number of samples; moreover, the assumptions of sta-

tionarity and ergodicity of the random processes are not guaranteed. We can

obtain at least an estimation of mean and standard deviation, if considera-

tions made in the previous section are verified by experiments on the system
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in hand: we are going to show that, if these considerations hold, the previ-

ous hypotheses on the random processes are not needed to evaluate means

and standard deviations. By applying our last consideration (the expected

behavior can be approximated by the observed behavior under failure, if it

is evaluated in a time period enough long.), we estimate statistical averages

of X(ti) by using time averages of a (finite) number of samples in different

instants:

mX =
1

N

i−1∑
k=i−N

xk (4.14)

σX =

√√√√ 1

N − 1

i−1∑
k=i−N

(xk −mX)2 (4.15)

When computing time averages, we have taken into account the other two

considerations we made: the first (Even when there is a failure, the expected

behavior can be approximated by the average throughput in a time period in-

cluding non-faulty behavior) imposes the use of samples preceding the occur-

rence of a failure, because samples following a failure are not representative

of the expected (correct) behavior; the second (the expected behavior can be

approximated by averaging the observed behavior in a longer period, in which

the workload does not vary noticeably) limits the number N of previous sam-

ples that can be used, because the samples X(ti−N) . . . X(ti−1) should have

statistical averages close to the ones of X(ti), in order to make an accurate

estimation of mean and standard deviation.

Because the statistics of the probability distribution of X(ti) can differ

for each ti, the averages (4.14) and (4.15) should be re-computed for each i.

However, because the workload imposed to the system can suddenly vary, the

averages estimated using previous samples can significantly differ from the

statistical averages in ti, leading to a throughput difference (false positive);

such problem could be limited only by a suitable choice of the sampling

period and the number N of samples. In the next section, we discuss the

problem of choosing the parameters characterizing the detection algorithm

in order to meet the required preconditions.
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4.4 Tuning of the algorithm

The described algorithm just allows the detection of failure modes which are

related to performances changes, in respect to the performances expected for

a correct behavior of the system. This technique requires that the throughput

of device drivers (the number of I/O operations in the time unit) is periodi-

cally sampled, and that the current sample is compared to the previous ones

through the relationship (4.13); a warning should be produced if the com-

puted value exceeds a threeshold. Therefore, the following parameters have

to be defined:

• the period of time T between consecutive samples;

• the number N of previous samples used to estimate the mean and the

standard deviation;

• the number k to which the standard deviation is multiplied to obtain

the threeshold.

The choice of the optimal values for these 3 parameters maximize the

probability of correct detection, and minimize the probabilities of a false

positive or a false negative. The difficulty in making a good choice is due

to the unavailability of a complete statistical description of the random pro-

cesses. In the following we suggest several guidelines to help in the choice,

allowing to base the detection algorithm on the information gathered from

preliminary experiments; the approach does not guarantee an optimal choice

of the parameters, but it leads to a good trade-off, that we will evaluate in

the next chapter.

In order to make a proper choice during the pre-operational phase of

the system, we base our procedure on the analysis of a representative work-

load. Experiments are executed to trace the occurrence of I/O events for the

considered workload; the events of interests are:

• reception of a packet, from the network device driver;

• transmission of a packet, to the network device driver;
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• read of a block, from the disk device driver;

• write of a block, to the disk device driver.

Once all events of interests during the execution have been traced, the

sampling period T is chosen. We consider a finite set of possible values,

and for each T we plot the number of events counted by each sample. The

considered values of T should be:

• much greater than the mean interarrival time between consecutive

packets or blocks, in order to avoid the presence of a large number

of samples equal to zero;

• less than the period of time between significant variations of the sam-

pled throughput.

In our example, we evaluate the following candidate values for T : 0.1,

0.5, 1 and 5 seconds (all greater than the 99th percentile of the interarrival

time distribution). The value of T should be chosen such that the plot

of the samples accurately describes variations of the throughput during the

execution, but removing short fluctuations due to secondary factors (e.g. T =

0.1 s), and avoiding a too coarse representation in which variations between

consecutive samples are too abrupt (e.g. T = 5 s). By the comparison of the

different plots obtained, we choose T = 1 s as the best representative of the

throughput’s trends; higher values has to be rejected because of the presence

of too abrupt differences between consecutive samples. The problem of the

choice of T is similar to the event tupling, in which correlated error log entries

should be grouped by their timestamp and type [BS96].

Once the value of T has been fixed, we have to choose the values for the

N and k parameters. The former should be such that the throughput is

roughly stable in N samples: there are not too much significant throughput

variations in a period of N · T seconds, and the samples allow for a good

approximation of the expected throughput mX . For each suitable value of

N , we have to identify the value of k such that random variations from the

current mean are discriminated from those caused by a failure. Therefore,

we plot the maximum value ki that, for each sample i, verifies the (4.13):
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(a) T = 0.1 s (b) T = 0.5 s

(c) T = 1 s (d) T = 5 s

Figure 4.9: Plots of throughput samples for packet transmission.
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(a) T = 0.1 s (b) T = 0.5 s

(c) T = 1 s (d) T = 5 s

Figure 4.10: Plots of throughput samples for block writes.
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because we know a priori that a failure did not occur in the period ti, we

must choose a value of k greater than kmax = maxi ki (so that a false positive

is not produced by the algorithm); vice versa, k should be less than ki if we

know there is a failure in ti (e.g. we injected a fault that was activated, and

a failure should be detected).

To explain the described procedure by examples, we show the plots (fig-

ures 4.11, 4.12 and 4.13) of ki for each sample i and for different values of

N (10, 30, and 50), during the execution of a workload without injection.

The plots also include observed throughput before and after workload execu-

tion (the workload actually executed for t ∈ [25, 250]): when the workload is

started (t w 25) and stopped (t w 250), there were values of ki greater than

the values during the execution, because there are an abrupt rise and fall

before and after the execution, respectively; we must choose N and k such

that those samples are recognized as symptomatic (that is, much greater than

the estimated mean), because the workload alternates between working and

non-working conditions (we expect a similar behavior when a failure occurs).

We have to choose the values of N and k for each monitored event (those

values can differ between events); k should be greater than all ki during cor-

rect workload execution, and less than ki at the beginning and at the end of

the execution (or, in general, when it is known that a failure occurred in ti).

In figure 4.11, we observe that the choice N = 10 does not allow to

discriminate between the values of ki during correct execution and ki during

throughput variations at the beginning and at the end: for packet reception

plot (figure 4.11d), the maximum ki during workload execution (7.904) is

near to the value of the peak at the end; also, in block writes plot (figure

4.11h) there are significant peaks of ki, so we discard the N = 10 value. In

general, the values chosen for T and N should not produce too high values

of ki, because this fact represents an high variance of sampled throughput

values, that makes difficult to distinguish failure symptoms.

For N = 30 (figure 4.12), we obtained a better discrimination between

values of ki: a threeshold of k = 5 or k = 6 prevents false positives (for each

ti, |X(ti)−mX | is less than 5 ·σX), except for packet reception (figure 4.12d);

for N = 50, also packet reception peaks are correctly discriminated (figure

4.13d). Nevertheless, such a great value forN requires that the workload does
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not change significantly during a period of 50 seconds (remember that the

stationarity hypothesis is needed to estimate the mean value using previous

values); in our example this condition is true, but a more conservative choice

for N is suggested if we do not have an high confidence of this assumption.

In order to gain more knowledge about the workload of the system, and

to obtain an higher degree of confidence, the previous analysis should be

repeated for different execution traces.

(a) Throughput for packet transmis-
sion.

(b) k for packet transmission.

(c) Throughput for packet reception. (d) k for packet reception.

(e) Throughput for block reads. (f) k for block reads.

(g) Throughput for block writes. (h) k for block writes.

Figure 4.11: Plots of throughput (blue), estimated mean (red) and maximum
instant values of k for detection (green), with N = 10.
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(a) Throughput for packet transmis-
sion.

(b) k for packet transmission.

(c) Throughput for packet reception. (d) k for packet reception.

(e) Throughput for block reads. (f) k for block reads.

(g) Throughput for block writes. (h) k for block writes.

Figure 4.12: Plots of throughput (blue), estimated mean (red) and maximum
instant values of k for detection (green), with N = 30.
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(a) Throughput for packet transmis-
sion.

(b) k for packet transmission.

(c) Throughput for packet reception. (d) k for packet reception.

(e) Throughput for block reads. (f) k for block reads.

(g) Throughput for block writes. (h) k for block writes.

Figure 4.13: Plots of throughput (blue), estimated mean (red) and maximum
instant values of k for detection (green), with N = 50.
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4.5 Conclusions

In this chapter, a technique for failure detection on complex systems was

introduced. The technique allows for the detection of such failure modes

(of the system as-a-whole) leading to performance variations (e.g. crashes,

hangs), and it is based on performance measurements at the operating system

level: in our work, we focused on the sampling of the throughput of device

drivers operations, that is packets exchanged by network devices and blocks

read and written by disk devices. The analysis of faulty and non-faulty

executions of a same workload showed that:

• The occurrence of a failure affects the considered device drivers mea-

surements (compared to the cases of correct execution);

• The measurements during non-faulty execution periods can be used to

estimate the expected throughput at a given time.

From those observations, we derived an algorithm that, using previous

throughput measurements, checks for significant variations from the expected

throughput at a given time; if it is the case, a failure is probably occurred

and a warning should be produced. Because the throughput is a quantity

subject to variations during nominal execution, a variation is considered as

a failure symptom if it is much more sharp than the previous ones, using

an estimate of the standard deviation of the measurements. The threeshold

applied by the algorithm, and other parameters such as the sampling period,

are tuned by the observation of the execution of a representative workload, in

order to achieve the desired trade-off between correct detection of anomalous

variations and wrong detections, by varying the degree to which such an

event is considered as a symptom.
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CHAPTER 5

Experimental evaluation of the detection technique

An algorithm must be seen to be believed.

Donald Knuth

5.1 Introduction

In this chapter, the detection technique introduced in the previous chapter is

evaluated using a testbed representative of mission critical applications. The

CARDAMOM middleware, briefly described in the next section, is adopted

to deploy a distributed fault-tolerant application; faults will be injected at the

operating system and at the application level, and the latency and coverage

of the failure detector will be measured under this scenario.

5.2 The CARDAMOM middleware

CARDAMOM is an opensource, CORBA-based middleware for safety and

mission critical applications [1]; it supports development of applications based

on the Distributed Object Model (DOM) and the Component Model (CM).
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CARDAMOM implements (and makes further additions to) the services

prescribed by the CORBA standard (see [HV99] and [RSCS02]), focusing on

scalable and safety-critical applications (figure 5.1), such as:

System Management Service Dynamic configuration and monitoring of

all nodes, processes and components in the system;

Fault Tolerance Service Transparent replication of the application, in-

cluding mechanisms for failure detection, request retry and redirection,

and state consistency between replicas.

Event Service Asynchronous, publish-subscribe communication.

Load Balancing Service Transparent redirection of requests toward a pool

of servers, in order to balance the load between them.

Figure 5.1: Services provided by the CARDAMOM CORBA-based middleware
for mission and safety critical applications.

The System Management can be used to deploy applications to several

nodes, to initialize, start and stop system’s elements in the desired order (al-

lowing the deployment of complex scenarios), to collect informations about
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the state of the applications, and to send/receive notifications to/from the

system. If a process’ life cycle is completely handled by the System Manage-

ment, it is a managed process. The System Management Service consists of

the following processes:

Platform Supervision Server An unique process for supervising all ap-

plications running on the system; it offers IDL interfaces to developers

and to applications for the management of the system.

Platform Daemons Processes running on each host on the system; they

control the Application Agents running on their node.

Application Agent It starts, stops and monitors processes of a particular

application, running on its node.

The System Management defines an interface to allow applications to

send their state, errors notifications and other information to the Supervision

Server; moreover, a servant (the implementation of a CORBA object) of a

managed process has to implement the following behavioural methods that

are invoked by the platform at the initialization, start and stop of the process:

on initialise invoked when the process is initialized;

on next step the process may require several phases for its initialization,

which are defined in this method;

on run invoked when the process begins its execution (running state);

on stop invoked when the process is stopped.

These methods are called through the callback mechanism: a reference

to the object is passed to the platform when it is first instantiated, and the

methods are asynchronously invoked during process execution.

The Fault Tolerance (FT) CARDAMOM Service is based on the FT

CORBA Specification. The latter prescribes that a CORBA object should

be replicated (i.e. more than one CORBA object and servant should be in-

stantiated in order to provide the same functionality), to ensure that requests
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will be processed even if a subset of replicas is failed. The full set of objects

is called object group, which can be referenced through a single identifier,

namely IOGR (Interoperable Object Group Reference); the client is unaware

of object replication, and client’s requests made to the IOGR are transpar-

ently forwarded to the objects of the group. In general, the object replication

matches with the replication of processes and physical nodes. The middle-

ware is responsible for the detection of objects’ failures, which is followed by

failure notifications and recovery interventions.

The state of the object group is shared between object replicas. Several

replication schemes are described by FT CORBA:

Stateless No state is assumed by the objects; requests are not influenced

by the past ones.

Cold Passive Requests (and the state) are only managed by a single (pri-

mary) object in the group; when the primary object fails, another ob-

ject (backup) retrieves the last snapshot of the state (checkpoint) from

the primary server.

Warm Passive As cold passive replication; checkpoints are periodically

sent to the replicas.

Active Requests are independently executed by each object of the group;

results are collected by a single server (gateway), which returns any of

the replies to the client. In order to ensure the consistency between

replicas (they should execute the same requests in the same order), a

Reliable Multicast protocol has to be used.

Active with voting As in active replication; objects’ replies are compared,

and replies different from the majority are discarded by the gateway.

The replication scheme adopted by the FT Service is the Warm Passive

Replication. Developers have to implement the state checkpointing and con-

sistency, and manage the object group’s memberships; CARDAMOM offers

dedicated facilities for these tasks, such as the State Transfer Framework (for

transactional state synchronization).
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In CARDAMOM, replicated objects (primary and backups) are contained

in separated processes, namely FT Locations. These processes are monitored

by the FT Manager (figure 5.2), which is in charge of detecting failures, by

periodic polling of daemons on different nodes (Simple Monitoring), which,

in turn, query local processes; if an answer is not returned within a timeout,

a process is considered faulty. The FT Manager, in turn, can be replicated

to improve system’s reliability. When a failure is discovered, notifications

are sent to the Replication Manager and to the Platform Supervision: the

former manages object groups, by remotely deactivating failed processes and

activating a backup replica; the latter may schedule a general application

reconfiguration, depending on the applicative scenarios defined by developers.

Figure 5.2: Architecture of the Fault Tolerance Service. The FT Manager peri-
odically polls platform daemons to inspect processes’ status. If a failure is detected,
the Replication Manager activated a backup replica of the object group.
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5.3 Experiments setup

The workload considered in this chapter is a distributed application, in which

a server replies to requests made by several concurrent clients. This work-

load is representative of applications dedicated to remote data collection and

storage; in this scenario:

• clients send data to the server by remote invocations of a method of a

distributed CORBA object;

• data is contained in a complex, nested structure, which requires a non

negligible overhead for un-serialization by the server;

• the server writes to its local disk several logging information and the

contents of a request; it also returns a integer value read from a local

file;

• at each request, the server increases a local counter which represents

its state information.

The deployed workload makes use of the Fault Tolerance Service provided

by CARDAMOM; the server is replicated two times (one primary and two

backup servers), and the FT Manager configures the platform to redirect

requests to a replicated server in the case of failure of the primary one. The

server state (the value of its internal counter) is synchronized with replicas,

which do not service requests until a server’s failure; when a replica is ac-

tivated, it can seamlessly keep running the distributed application without

apparent service interruption or failures. The objects and processes compos-

ing the workload are distributed in 8 identical machines:

• 3 nodes execute, respectively, the primary server and 2 backup replicas;

• 3 nodes execute client processes;

• 1 node executes the FT Manager;

• 1 node executes the Supervision Server.
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The hardware and software configuration of a node is shown in table 5.1.

Each node mounts an NFS remote root partition, and several other NFS

partitions for programs, shared libraries and home directories; a node is also

equipped with a local SCSI disk, in which are stored logs from applications

and the middleware, and files read and written by the workload.

Table 5.1: Hardware and software configuration of the distributed application
nodes (HP ProLiant DL380 G3 Server).

CPU Intel XeonTM 2.80GHz (dual processor)

RAM 3.5 GB

Disk controller Compaq Smart Array 5i/532

Hard disk Wide Ultra3 SCSI Hard Drive, 36 GB, 160

MB/sec (10000 RPM)

Network card Broadcom NC7781 Gigabit Ethernet

Linux kernel version 2.6.21

Linux distribution Red Hat Enterprise Linux AS release 4 (Na-

hant Update 2)

CARDAMOM version 3.1

SystemTap snapshot 20070721

The primary server is the node considered for fault injection and failure

detection experiments. The clients generate a fixed amount of requests (1500

requests/client, 4500 total requests), during which a fault is injected (about

half a minute since the start time of the execution). The time between con-

secutive requests ranges from 10 ms to 50 ms, and it is progressively increased

and decreased during an experiment, in order to evaluate the detector under

load fluctuations.

The measures which we will get from the experiments are the coverage

and latency of both the operating system and the described failure detector,

as defined in the section 3.3.1. Our purpose is to compare those measures,

to show that the failure detector can be used by the system to improve its

detection capabilities. As prescribed by the dependability benchmark, the

considered faultload includes injections at the device drivers’ interface; the
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same implementation of section 3.3.2, by dynamic probing of target func-

tions. The experiments in this chapter also share the considerations of the

previous dependability benchmark, such as the possible outcomes, the sta-

tistical interpretation of the results, and the way the measures are estimated

from the experiments.

Moreover, software faults in the user application level are injected, in or-

der to evaluate the coverage and latency of the detector in respect to system-

level failures induced by applications; for application faults, the failure de-

tector’s coverage and latency are compared with the ones of the FT Manager

detection mechanism. As explained in section 5.5, the injected software faults

are chosen such that the failures produced by them are representative of the

real ones.

The measured throughput for this workload was also used in the previous

chapter to explain the tuning of the algorithm (§ 4.4). Therefore, in our as-

sessment experiments, the same parameters for the failure detector described

there will be used:

• A sample period of T = 1 s;

• A number of previous samples N = 30;

• A threeshold k = 6 for both packet transmission and reception;

• A threeshold k = 5 for both disk reads and writes;

The I/O throughput, as seen by the failure detector, is shown in figure

4.12. When a failure is detected, a log entry is produced by the detector,

which is composed by the following fields:

• A timestamp (in nanoseconds);

• The event which experienced the throughput difference (network trans-

mit/receive, disk read/write);

• The device (network interface or disk device) which the event refers to;

• If the throughput difference is a throughput peak (the sampled through-

put exceed the estimated mean value) or a throughput loss (the mean

exceed the sampled throughput);
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• The value of the current throughput sample;

• The mean estimated through previous throughput samples;

• The variance estimated through previous throughput samples;

• The value of k used for the threeshold.

The detector was implemented in the SystemTap scripting language (list-

ing A.7), and it executed as part of the workload in kernel space; because

of potential disk driver failures, the detector log entries were also redirected

to the system console (/dev/console). Log files were also produced by the

CARDAMOM middleware and by the client and server processes; they in-

clude the outcome of each disk operation by the server, the server state and

returned values, the serviced requests, failures detected and processed by the

FT Manager, and the timestamp of each entry.

5.4 Operating system faultload

5.4.1 Description

The first test set used to evaluate the detection algorithm is based on a

faultload at the operating system level (figure 1.5). The same dependability

benchmark defined in section 3.3.1 was used, with the workload configuration

described in section 5.3. Again, the activation of software faults was emulated

by error injection, through parameter corruption of functions’ invocations at

the interface between device drivers and the rest of the kernel. The injected

errors should not be confused with SWIFI experiments described in section

4.2; the latter are representative of hardware-induced faults, but not of real

software defects in the source code.

In order to improve the effectiveness of tests, i.e. to reduce the number

of experiments and to increase the number of robustness failures found, still

producing a similar estimation of coverage and latency, the results of exper-

iments described in section 3.3.3 were closely analyzed. An analysis of the

outcome of each test revealed that:
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• The flipping of a subset of bits produced twice the number of system-

level failures than other bits;

• The most of system-level failures was caused by injection at a small

subset of function parameters.

Figure 5.3: Distribution of system-level failures across the bits in which a bit-flip
is injected.

As showed in figure 5.3, the 1st, 29th, and 32th bit produced a greater

amount of system-level failures. Moreover, there were a subset of parameters

in which many bit flips caused a system-level failure (namely, vulnerable pa-

rameters), and a little number of failures was observed for the rest of function

parameters (namely, robust parameters); for the tg3 driver, there were 7 out

of 21 vulnerable parameters, and 1 out of 5 for the scsi driver (figure 5.4).

Therefore, we can improve the efficiency by focusing the test selection on the

most vulnerable bits; because outcomes are grouped by parameters (bit-flips

on vulnerable parameters lead often to system-level failures, and bit-flips on

robust parameters do not significantly affect the experiment), and some bits
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Figure 5.4: Distribution of system-level failures across the params in which a
bit-flip is injected.

are more vulnerable than other (in term of produced failures), thus a great

number of system-level failures can be observed if we limit bit-flips only to

the most vulnerable bits, still obtaining representative results (because a

failure after injection at a vulnerable parameter is representative of all other

potential failures produced through that parameter). In our experiments, we

will inject bit flips only on bits 1, 29 and 32, instead of full 32 bit flips for

each parameters, thus reducing of a factor of 11 the number of experiments.

The device drivers subject to error injection were the scsi disk driver

(cciss) and the network card driver (tg3 ). The target functions were selected

by finding the most called functions of the kernel called by the drivers, and

the most called functions of the drivers called by the kernel. A set of 48

experiments for the scsi driver (16 parameters of 11 functions), and a set

of 24 experiments for the network driver (8 parameters of 7 functions) were

selected.
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5.4.2 Results

In figures 5.5a and 5.5b, it is shown the number of experiments in which a

log entry was produced by the system and by the failure detector, in respect

to the total amount of experiments, for the considered System Under Bench-

mark; the ratio represents the coverage in respect to both scsi and network

drivers’ failures. These results allow the comparison of the percentages of the

injected driver’s failures which were detected by the proposed algorithm and

by the system’s logging mechanisms. In figure 5.5c, the coverage obtained

by merging logs from the detector and the system is indicated.

The figures 5.6a, 5.6b, and 5.6c show the coverage in respect of system-

level failures, i.e. the subset of injections not tolerated by the system. The

most of non-logged system-level failures were observed for the network driver,

in which a not valid pointer is immediately dereferenced after injection, lead-

ing to the complete interruption of kernel execution; this is the same cause

of low system’s coverage for network driver’s failures of section 3.3.3.

From these results, we observe that the failure detector did not increase

significantly the coverage in respect to tolerated drivers’ failures, because the

overall coverage is close to the one of system’s logs. Instead, the improvement

of the coverage in respect of system-level failures (the most severe ones) is

greater. This is due to the fact that when a failure is not tolerated by

the operating system, it affected the whole system (including the workload),

leading to performance variations; because the failure detection algorithm

assumes that a failure will produce sudden variations of the system’s behavior

in respect to I/O operations, it can not detect a failure which not modifies

significantly the system’s behavior (this is the case of a driver’s failure which

is tolerated by the rest of the kernel). Because there exist cases in which the

algorithm detected failures not logged by the system, the failure detector can

be included in system’s logging facilities, in order to improve the degree of

detection of critical failures.

In table 5.2, it is shown the mean latency for the failure detector and

system’s logs, for both scsi and network drivers’ failures. In all experiments,

a low latency (about 1 second) was observed; the mean is evaluated from

those cases in which it was possible to quantify the detector logging delay;
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(a) operating system.

(b) failure detector.

(c) merged logs.

Figure 5.5: Log coverage for injections at the operating system level.
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(a) operating system.

(b) failure detector.

(c) merged logs.

Figure 5.6: Log coverage of system-level failures for injections at the operating
system level.
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in other cases, we know that the actual detector latency was lower than

1 second, although it was not possible to quantitatively measure it. The

failure detector did show an higher latency, due to the higher sample period

(T = 1 s) and the algorithm overhead, while the standard log mechanisms

detected failures by immediate checks on the system’s internal state (e.g.

correctness checks of the parameters passed to a function). Nevertheless, the

detector’s latency was significantly lower than high latency cases observed in

experiments of section 3.3.3.

Table 5.2: Mean detection latencies for failures induced at the operating system
level. The failure detector samples the I/O throughput with a sampling period of 1
second.

Failure Detector Operating System

Mean latency 0.403760 s 0.036916 s

5.5 Application faultload

5.5.1 Description

In order to assess the quality of the proposed failure detector, we also ex-

ecuted several fault injection experiments at the application level. Because

the operating system is not affected by these injections (the system call in-

terface was proved to be robust), we do expect that the operating system’s

facilities will not produce log entries related to experiments, therefore the

detection coverage and latency evaluated by these experiments are referred

to system-level failures, i.e. failures that affect the application level and thus

the behavior the system as-a-whole.

The faults to be injected in the server process are based on the failure

modes described (and expected to be tolerated) in the specifications of the

FT CARDAMOM service; this service should replace a primary copy of an

object if its process crashes, or it is under suspicion to be faulty. We can

identify two classes of failures:
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• Failures implying the arrest of a servant’s process (server failures);

• Failures in which application’s behavioral methods (callbacks) execu-

tion exceeds a predefined amount of time (timing failures).

The considered failure classes include process crashes and hangs; in par-

ticular, we assume that these failures are caused by software faults in the

servant (the implementation of the CORBA object) or in callback meth-

ods. Process hangs can be further differentiated in active hangs (the process

still executes and makes use of system’s resources, although it is indefinitely

waiting) and passive hangs (the process is blocked and not executed, until a

logical resource is available); an hang can be caused by an erroneous applica-

tion state (e.g. it is in an infinite loop), by an undisciplined access to shared

resources (e.g. a deadlock), or by the progressive consumption of physical

or logical resources; these conditions more probably occur for concurrent,

real-time, heavy-loaded systems, and attention should be paid to cope with

them in critical applications. Instead, a crash can be caused by the voluntary

return of the process (e.g. after the catch of an exception), or a signal sent

by the operating system (e.g. sigkill). Process crashes and hangs were also

observed when errors were injected in the kernel (workload failures).

In order to induce the described failures, the source code of the work-

load application was mutated; after each mutation, the primary server’s ex-

ecutable is substituted with the mutated one. The mutations used for the

robustness test, implemented in [Cin07], are listed in table 5.3.

Table 5.3: Source code mutations for software fault injection at the user applica-
tion level.

Identifier Type Location Mutation

ServerFailure1 Crash on_run

callback

exit of the process after an

amount of time

ServerFailure2 Crash servant

object

exit of the process at a pre-

defined request

Continued on next page. . .
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Table 5.3 – Continued

Identifier Type Location Mutation

ServerFailure3 Crash on_run

callback

killing of the process after

dereferencing a null pointer

ServerFailure4 Hang servant

object

infinite empty loop at a pre-

defined request

ServerFailure5 Hang servant

object

infinite CPU and I/O bound

loop at a predefined request

ServerFailure6 Hang servant

object

passive wait for an IPC

semaphore at a predefined

request

TimingFailure1 Hang on_run

callback

infinite empty loop

TimingFailure2 Hang on_run

callback

infinite CPU an I/O bound

loop

TimingFailure3 Hang on_run

callback

passive wait for an IPC

semaphore

HangOverloading1 Hang servant

object

progressive allocation of

threads passively waiting

for an IPC semaphore

HangOverloading2 Hang servant

object

progressive allocation of

threads executing an infi-

nite CPU and I/O bound

loop

ServerFailureState1 Crash set_state

method

active finite wait and pro-

cess exit at a predefined re-

quest

ServerFailureState2 Crash set_state

method

process exit at a predefined

request

ServerFailureState3 Hang set_state

method

infinite empty loop at a pre-

defined request
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The considered failure modes are induced by injecting software faults of

the Algorithm and Timimg/Serialization ODC classes (table 1.1); the faults

were selected to ensure the immediate manifestation of considered failures:

the execution flow of the server is altered to cause instantaneous process exit

(by the exit() library call, or forcing a kill by dereferencing a null pointer),

or a process stall, both passive (by requesting an IPC semaphore never freed)

and active (by executing an infinite loop). Moreover, in order to reproduce

stressing conditions of limited resource availability (overloading), which are

recognized as a cause of failures, several threads (using the POSIX pthread

library) were allocated at each request, thus consuming physical (e.g. CPU

cycles) and logical resources (e.g. semaphores, OS task structures). Selected

locations for fault injection were the on_run() method (which is invoked

by the platform after the application deployment, in order to create more

sophisticated scenarios), the servant CORBA object implementation (the

remote method which is invoked by the clients) or set_state() method

(which is called after a client request is serviced, in order to synchronize

primary server’s state with the backup replicas); the latter is a critical fault

location, in which a fault may compromise the servers’ state consistency (a

backup server should assume the same state of the primary server just before

a failure): inconsistencies can be avoided only using a reliable protocol such

as the two-phase commit protocol.

5.5.2 Results

The analysis of the events’ traces and of failure detector’s coverage supports

our initial hyphotesis about most common failure modes, i.e. a remarkable

I/O throughput variation from the estimated value is a common failure symp-

tom. In the case of the considered workload, the occurrence of a failure lead

to throughput losses both for crashes (figure 5.7) and hangs (figure 5.8). Be-

cause of representativeness of the selected failures, the correct detection of

these symptoms is an useful tool to design more robust systems using fault

treatment techniques against these failure modes.

In figures 5.9a and 5.9b, it is shown the coverage of the failure detector

and the FT Manager provided by the middleware. The operating system was
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(a) Packet transmission. (b) Packet reception.

(c) Disk reads. (d) Disk writes.

Figure 5.7: Observed I/O throughput (with a sampling period T = 1 s) during a
crash failure experiment. The fault is injected after 40 seconds, in which the server
process crashes.
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(a) Packet transmission. (b) Packet reception.

(c) Disk reads. (d) Disk writes.

Figure 5.8: Observed I/O throughput (with a sampling period T = 1 s) during an
hang failure experiment. The fault is injected after 40 seconds, in which a thread
of the server process is indefinitely stalled.
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not subject to error propagation from the application level, therefore no logs

were produced about the correctness of its state; from the OS point of view,

the processes did execute correctly, and possible failures have to be seek in

the semantics of the application (i.e. the coherence of the behavior to the

system’s specification).

(a) failure detector.

(b) FT Manager.

Figure 5.9: Log coverage for injections at the application level. All tests logged
by the FT Manager were also logged by the failure detector.

The failure detector provided a greater coverage than the FT Manager.

All detected failures were logged with a low latency (lower than 1 second).

The cases not logged by the FT Manager and detected by our algorithm

were for the most part hangs at the application logical level; because no

assumption is made about the behavior of the application, the FT Manager
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can not distinguish between a misbehaving application and a correct one.

When a failure does not lead to the interruption of a process (e.g. a crash)

or a denial of the service, or the application does not offer any explicit hint

about its erroneous state (e.g. a log file produced by the application), the

FT Manager has no way to detect the occurrence of a failure. Nevertheless,

the assumption of a throughput variation during a failure is not met in all

cases: in two tests (HangOverloading1 and ServerFailure6), the failure did

not cause a remarkable difference from the expected throughput, although a

performance degradation was observed.

It should be noted that the measured coverage does not necessarily coin-

cide with the coverage that the failure detector will provide for the system

in hand. For this purpose, a risk analysis should be carried out in order to

estimate the relative occurrence probabilities of the considered failures; then

the obtained values can be used to weigh the detector’s coverage of each

failure mode.

The mean latency for the failure detector is reported in table 5.4. The FT

Manager mean latency, which is compared to the one of the failure detector,

is evaluated from those cases in which the latencies were low. There were also

cases in which a failure was detected by the FT Manager with a very high

latency (e.g. hangs in the on_run() method); the FT Manager was able to

detect the failure because a maximum time for the execution of the behavioral

methods was defined in the application logic during the deployment (in our

tests, the timeout was set to 20 seconds).

Table 5.4: Mean detection latencies for failures induced at the user application
level. The failure detector samples the I/O throughput with a sampling period of
1 second, in which the detection latency ranges. For the mean latency of the FT
Manager, high latency cases (higher than 1 second) were not considered.

Failure Detector FT Manager

Mean latency 0.654069 s 0.205902 s

The latencies for the failure detector result higher than the ones for the

FT Manager. The failure detector latency is affected by the choice of the
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throughput sampling period T (in this case 1 second); if ∆ is the mean time

for the periodical execution of the algorithm (including the computation of

time averages and the threeshold comparisons), then the mean detection la-

tency after the occurrence of a failure is likely to be included in the range

[∆,∆ + T ]. The FT Manager was not affected by the delay caused by pe-

riodical sampling, and the detected failures were timely notified (e.g. the

explicit exit of a process is immediately notified by the Platform Daemon on

the same host).

Therefore, explicit notifications from the application (e.g. application

logs) are the most effective way to detect the occurrence of a failure. Never-

theless, due to the absence or the incompleteness of application’s detection

mechanisms, the proposed failure detector is an effective and cheap way to in-

crease the detection abilities of an already existing application, still providing

short notification times.

5.6 Analysis of false positives

In the previous sections, the probability of correct failure detection by the

algorithm was evaluated; it is shown that, for common failure modes, the

detector produces a notification when a failure occurs, with a reasonable

coverage level. However, there is also a significant probability that a failure

notification is produced when a failure did not occur, namely a false positive.

The occurrence of a false positive is due to a difference between the current

sampled throughput and the throughput mean value estimated from previous

samples; in turn, the difference can be caused by:

• A random fluctuation of the sampled value around the statistical mean

(this event has a non-zero probability P(ThDiff | not Failure), see §
4.3);

• A sudden and significant variation of the probability distribution at the

current time, i.e. the I/O load submitted to the system varies within

a period in the order of the sampling period T .

The occurrences of the first cause can be suitably reduced by a correct

tuning the algorithm parameters, i.e. by setting a sampling period T that can
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moderate the oscillations of the observed samples due to secondary factors,

and a k threeshold value enough conservative. Nevertheless, the tuning of

the algorithm is not guaranteed to be optimal, and the second cause may

not be prevented by an adequate tuning, because I/O load variations may

not be known during the pre-operational phase, and the throughput is not

guaranteed to be approximately stationary (i.e. the mean can be estimated

by previous samples) within a time period of N · T seconds.

In order to discriminate between false and correct failure notifications,

further processing of detector logs should follow. In this section, we closely

analyze the occurrences of false positives, in order to evaluate the extent of

wrong notifications, and to propose useful hints for discrimination.

The workload considered for the analysis of false positives was similar to

the one used for the assessment of detection coverage and latency; the appli-

cation was slightly modified, removing the bound on the maximum number

of requests. No faultload was defined for this test, because its purpose is

to observe the false positives produced by the algorithm during non-faulty

execution, in which it should not produce notifications. The test executed

for 64 hours, and 3460583 requests were served.

The failure detector produced 3423 log entries, with an average rate of

53.5 entries per hour. The detector would not have produced so much false

positives, if the value of k for the network events was higher. The value

k = 7 reduces the amount of failure positives to 2271, with an average rate

of 35.5 entries per hour; this value of k still allows the detection of failures

induced by fault injection experiments of previous sections. The number of

false positive for each event type is shown in table 5.5, which we will consider

in the following of this section.

There were no false positives due to disk reads events; because of read-

ahead and buffering mechanisms of the operating system, the number of

reads from files was greatly reduced, and so the amount of counted events

was too low to trigger the failure detector. The network reception events

produced a much higher number of false positives; it can be seen from figure

4.12d that events for this category present a greater variability, which leaded

to unexpected throughput differences; this is probably caused by a not good

choice of T , and an higher value (e.g. T = 2 s instead of T = 1 s), keeping
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Table 5.5: The distribution of false positives produced by the detection algorithm
during a non-faulty execution period of 64 hours. The algorithm’s parameters were
T = 1 s, N = 30, k = 7 for network events, and k = 5 for disk events.

Number of events Average rate (events/hour)

Network reception 1366 21.4

Network transmission 447 7

Disk reads 0 0

Disk output 458 7.1

Total 2271 35.5

fixed the product N · T (e.g. N = 15 instead of N = 30), would dampen

spurious variations.

We also observed a difference between false positives and correct detec-

tions, in term of quantitative variations of the sampled throughput from the

estimated mean value. In table 5.6, there are the measured throughput dif-

ferences (in term of multiples of the estimated standard deviation) which

caused a detector notification. The false positives present a lower mean

value, although there were several cases in which the throughput difference

of a correct failure notification was lower than differences which caused false

positives, therefore the correct notifications can not be discriminated by sim-

ply comparing the value of the throughput difference to this mean value.

It should be also noted that the greater standard deviation of throughput

differences for false positives is caused by a relatively small set of cases in

which the difference was much greater than the mean value (e.g. k > 20 and

k > 30).

Finally, we examinate the time periods between consecutive false pos-

itives, namely interarrival times. In figures 5.10a, 5.10b, and 5.10c, it is

shown, for each period length, the number of false positives following the

previous ones after that period length. It is clearly visible that the most

of false positive repeats periodically after a fixed amount of time; for disk

writes and network transmission, many notifications repeat every 10 minutes,
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Table 5.6: Mean and standard deviation of throughput differences (i.e. differences
between the current throughput sample and the estimated mean value) notified by
the algorithm. The values are expressed as multiples k of the current estimated
standard deviation.

Application False False positives, False positives,

faults positives excluding k > 20 excluding k > 30

(5/100 cases) (1/100 cases)

Mean 14.909729 10.935000 10.189820 9.555996

Std. dev. 9.438491 9.966790 4.081204 2.930750

and many other immediately follow the previous after 1 second; for network

reception, the notifications’ repetitions exhibit more complex patterns, al-

though many notifications repeat regularly after 1, 2 and 3 minutes; several

interarrival waits between periodic notifications are probably intermixed with

random occurrences of false positives, breaking down interarrival times.

The large amount of periodic notifications is due to the occurrence of reg-

ular variations of the I/O load, caused by the operating system (e.g. flushing

of dirty pages, scheduled maintenance operations) or the application itself

(although clients’ requests frequency is variable, the same executable code

repeats itself indefinitely); we refer to these causes as systematic factors,

which can be potentially exploited to recognize false positives. In future

work, automatic identification of notifications due to systematic factors can

be designed, based on the analysis of detector’s behavior during a long time

period, as we manually made in this section.

5.7 Conclusions

In this chapter, we examined the performances of the proposed algorithm

for failure detection, using a workload and a faultload representative of crit-

ical applications. For failures induced by the operating system, the detector

identified only a relatively small part of failures; nevertheless, the detector

improved the coverage of system’s logs through the identification of failures

140



5. Experimental evaluation of the detection technique

(a) Disk reads.

(b) Network transmission.

Figure 5.10: Histograms of interarrival times between consecutive notifications.
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(c) Network reception.

Figure 5.10: Histograms of interarrival times between consecutive notifications
(continued).
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not covered by them. Moreover, if the analysis is restricted to system-level

failures, the improvement of the failure detector is greater: in general, the

failure detector is able to identify only those failures affecting overall perfor-

mances, and this is not the case of drivers’ failures tolerated (and therefore

not propagated to the workload) by the operating system. It was also noted

that, when a system-level failure due to the operating system occurs, in

several cases there is not opportunity for logging or recovery interventions,

because of complete interruption of kernel execution (e.g. a kernel panic).

In the case of failures induced by faults at the application level, the fail-

ure detector showed an high coverage level, and its logs can be joined with

the standard application mechanisms for detection (in this context, the FT

Service), with a significant coverage improvement and without any change in

the application. The high measured coverage supports our initial hypothesis

that, for common failure modes, a remarkable throughput variation is likely

to occur.

For both faultloads at the operating system and at the application levels,

the failure detector provided a low latency, i.e. the logging delay from the

time of injection of a fault was less than or about 1 second. In general, it

is expected that the mean latency value amounts to about T/2, where T is

the throughput sampling period of the algorithm. Therefore, the detector’s

latency can be considered timely enough to allow potential recovery and fault

treatment techniques.

The main obstacle to the utilization of the failure detector on a produc-

tion environment is its proneness to the production of false positives. The

execution on a long time period of the workload without faults, monitored by

the failure detector, showed an high false positive rate. The analysis of detec-

tor’s logs discovered that a great part of false positive can be prevented by a

better tuning of algorithm’s parameters, and that several notifications were

caused by systematic factors that periodically produced variations of the I/O

load submitted to the system. Therefore, the suitability of the failure detec-

tor for utilization in real-world scenarios depends on other mechanisms that

can decide, on the basis of secondary information and further processing of

detector and system logs, if a failure actually occurred, and what intervention

can be made.
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In this work, the problem of the failure detection for complex, COTS-based

systems has been discussed. We adopted an empirical approach to study

what are the effects of failures, due to software faults, on the execution of

the system. We observed that the occurrence of a failure has a remarkable

influence on the throughput of I/O operations, for example packets transmit-

ted and received through a network device, or blocks read from and written

to a disk. On the basis of the observations on collected data, we defined an

algorithm for on-line detection of failures, which exploits throughput mea-

surements to identify an anomaly in device drivers’ I/O operations, by com-

paring a throughput sample to the estimated statistical mean and standard

deviation.

In order to evaluate the efficacy of the proposed algorithm and of the ex-

isting logging mechanisms, we introduced a dependability benchmark frame-

work for quantitative analysis through experiments. The benchmark assumes

as error model the exchange of a wrong value from a device driver to other ker-

nel subsystem, which was also used in several work in the past for robustness

testing of operating systems, and to emulate the occurrence of a transient

fault in the device drivers (which are the major part of the kernel source

code, and have an higher number of faults than other subsystems). The de-

pendability benchmark has been implemented and preliminary experiments

were made with a synthetic workload, in order to evaluate its feasibility and

144



Conclusions and future work

reproducibility; moreover, we gained insights into failure modes of the Linux

kernel: in particular, it was observed that the logging latencies for different

tests can be classified in low and high latencies, i.e. there exist several cases

in which the latency is much more than 1 second (e.g. due to timeouts), and

others in which the latency is very low (in the order of hundredths of mil-

liseconds); moreover, we observed that the kernel was able to log only those

errors which were tolerated, but no logs were produced when the injection

caused a system-level failure.

Then, we used the dependability benchmark for the evaluation of the

algorithm under a workload representative of critical applications. In addi-

tion to the faultload at the operating system level, we also included software

faults at the application level, in order to evaluate the algorithm from more

than one point of view. We observed that the algorithm increased the overall

log coverage for both types of faults: in the case of operating system’s faults,

the improvement was less significant because most of faults were tolerated or

leaded to the complete interruption of the execution; instead, the algorithm

detected the most of faults injected at the application level. Moreover, in all

cases the failure detector logged with a low latency. Therefore, the algorithm

is able to leverage the initial hypothesis on the throughput variations under

failures, to improve logging mechanisms of both the operating system and

the middleware platform, guaranteeing bounded latency (in the worst case,

the latency do not exceed the sampling period).

The next step, in order to improve system’s dependability, will be to

merge logs from the failure detector and from system’s facilities, and to define

recovery mechanisms (at the application or at the operating system level)

based on the logs collected. An innovative approach to do so is represented by

on-line software diagnosis, which adds a further step between failure detection

and the treatment of the fault: the root cause of the failure is identified

(isolation), i.e. the faulty software component and the occurred fault are

determined, such that a treatment intervention, focused on the actual fault,

can be applied. The detection of a failure on a single node can also be useful in

distributed systems, in order to prevent the spread of failures among multiple

nodes of the system.

Future work also include further study to improve the failure detector
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itself. Additional processing on detector’s logs is needed in order to rule out

false positives: as we observed, there is not a single evidence that allows

to distinguish false positives from correct detections, but there exist several

features that statistically mark false positives, such as the contiguity of the

throughput sample and the threeshold, and the periodicity of the detections’

occurrences; those observation can be used to reduce the number of false pos-

itives (e.g. by using machine learning algorithms) and to improve detector’s

effectiveness. Moreover, an automatic procedure for the tuning of the algo-

rithm should be defined, in order to reduce the incidence of human errors,

and to make the failure detector self-adapting to variable working conditions

(e.g. by forcing the automatic re-tuning of the algorithm when too many

false positives occur).
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APPENDIX A

Scripts for kernel monitoring and fault injection

A.1 Utilities for dependability benchmarking

In this work, a dependability benchmark is proposed for the assessment of

logging mechanisms of both the operating system and the proposed failure

detector. The implementation of the dependability benchmark for the case

study includes:

• an utility for injection of faults at the operating system level;

• two utilities to identify fault locations for the considered workload;

• an utility for the measurement of the operating system’s latency.

As described in section 3.3.1, we assumed as the error model for the

operating system the return of a wrong value from a device driver to the

kernel, which can be implemented by altering the value of a parameter at the

interface between the kernel and device drivers. The injection is made using

dynamic probes: a probe is triggered when the target function is invoked, and

a parameter (or the return value) is modified by the probe handler (listing

A.1). The actual injection is implemented in the C function inject() defined

in lib.stp tapset (see listing A.4):
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• the kernel stack is recursively inspected, in order to find the stack frame

(i.e. the stack data allocated to a function) referring to the invocation

of the target function;

• if the target is a kernel function:

– a check is made to ensure that the function was called from the

device driver’s module;

– if the check is successfull, a function parameter is modified;

• instead, if the target is a driver’s function:

– a check is made to ensure that the function was not called from

the driver itself;

– if the check is successful, the return value of the function is mod-

ified;

• if an error was injected, return true, otherwise return false.

When the probe handler ends, the target function’s execution is resumed.

In all cases, a check is made to verify if the target function is called from a

point allowed for injection (i.e. a function exported by the module has to be

called by the rest of the kernel, and a function exported by the kernel has to

be called by the module). The return address has to belong to the range of

allowed addresses, so it is read from the current stack frame (see figure A.1)

and compared to the addresses passed to the inject() function. In order to

identify the current stack frame, a recursive inspection of the stack is made

from the top: if the return address of the stack frame i belong to the target

function, then the current stack frame at the time of the invocation is the

frame i−1; if not, the frame pointer (i.e. the pointer to the initial address of

the stack frame) of the previous stack frame (i− 1) is retrieved (it is pointed

by the frame pointer of the current stack frame), and the check is repeated

on the previous stack frame.

In the x86 architecture, the current frame pointer is stored in the EBP

register. The described stack layout is also used for the kernel stack if it is
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function_1() {
int a;

int b;

function_2(1,2,3,4,5);
...eip1:

}

function_2(int c, int d,
int e, int f, int g) {

int h;
...

}
return;

eip2:

AFTER

INVOCATION
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ra

m
e 

i

int b

int a

ebp1

eip1

int h

int g

int f

FFFFFFFF

0

ebp2

int d

int e

int c

eip2

esp

registers

BEFORE

INVOCATION
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int b

int a
eip1

ebp1

esp

FFFFFFFF
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cr
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Figure A.1: The calling convention used in the kernel.
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compiled with the CONFIG_FRAME_POINTER option; if not, stack inspection is

still possible, although it is slightly more complicated and inefficient. The

check of the stack is made each time the probe is activated, even if an error

was already injected and does not have to be injected anymore, because we

do not want to introduce significant performance differences compared with

the period in which an error is injected.

All parameters considered for the injection does fit in a single data word

(in x86, the size of a data word is 32 bits): if the parameter is an interger

value (e.g. int, long), a char, or a pointer to other data (e.g. a struct or

a function), it is directly stored in a register or in a word on the stack. In

order to alter invocation’s parameters, the probe handler has to access to the

current stack frame and to the registers at the time of the invocation. The

parameters are passed to a function following this convention:

• the first parameter is passed through the EAX register;

• the second parameter is passed through the EDX register;

• the third parameter is passed through the ECX register;

• the parameters following the third one, if any, are pushed on the stack

in reverse order, i.e. the last parameter is the first one pushed on the

stack, and the fourth parameter is the last one.

Before the execution of the probe handler, the CPU context containing the

registers’ value at the time of the invocation is saved by the KProbes frame-

work, and it available to the handler through the CONTEXT macro. Those

value are modified, and the saved context is written to CPU register after

the execution of the probe handler. In the case of alteration of a return value,

the mechanism for the injection is similar: the calling convention prescribes

that a value has to be returned through the EAX register, which is modified

by the handler.

The inject() function is also used for tracing of the functions called

from a module, and functions of a module called by the kernel, during the

execution of the workload, which represent suitable locations for injection of

errors. When the check is successful, inject() does not modifies function’s
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parameters, but it still returns a boolean true value, as if it injected an error;

the behavior is modified by an dedicated input parameter.

Another script is used for measurement of the latency of logging mech-

anisms (see listing A.5): the syslogd process is monitored to trace its invo-

cations of the sys_write() system call, which is used to store log entries to

system files such as /var/log/messages; the timestamp of the return from

the system call is printed, which can be compared to the timestamp of the

injection of the error to evaluate the latency.

The last script (listing A.6) is used to trace scsi and network devices

activities. The events are stored in binary format trace, to achieve better

performances and lower I/O overhead. The trace is analyzed after workload

execution, in order to gain insights into the performances of the system with

and without failures.

In the following, we show the source code of the described scripts for

dependability benchmarking.

Listing A.1: SystemTap script for injection of bit-flip errors on the interface
between the kernel and device drivers (injector.stp).

1/*

2Script name: injector.stp

3Version: 1.0.0

4Description: Utility for injection of bit -flip

5of parameters at the device drivers ’ interface

6
7Usage:

8$ stap injector.stp -g -I DIR_WITH_LIB_STP \

9<func_name > <param_num > <bit_mask > \

10<module_init_addr > <module_end_addr >

11
121) the name of the targeted kernel function

132) the signature ’s position of the injected parameter

14(0 to inject in the return value , 1 in the first

15parameter , and so on)

163) the bit mask to use for bit flip injection

17(radix 10 format)

184) initial address of the target module text segment

19(radix 16 format)

205) final address of the target module text segment
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21(radix 16 format)

22
23*/

24
25/* The total number of consecutive faults to inject */

26global total_injections = 1

27
28
29/* The injection is started after a fixed amount

30of seconds */

31global wait_time = 1

32
33
34global module_start_addr

35global module_end_addr

36global reject_start_addr

37global reject_end_addr

38global inject_param

39global bitmask

40
41global start_time

42
43global inj_func_addr_start

44global inj_func_addr_end

45
46probe begin {

47%( $2 >0 %?

48module_start_addr = $4

49module_end_addr = $5

50reject_start_addr = 0

51reject_end_addr = 0

52%:

53module_start_addr = 0

54module_end_addr = 0xFFFFFFFF

55reject_start_addr = $4

56reject_end_addr = $5

57%)

58
59inject_param = strtol(@2 ,10)

60bitmask = strtol(@3 ,10)

61
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62start_time = gettimeofday_s ()

63
64/* Initial and final address of the target

65function ’s code */

66inj_func_addr_start = get_func_addr_start(@1);

67inj_func_addr_end = get_func_addr_end(@1);

68}

69
70probe

71%( $2 >0 %?

72// Inject a fault in the function call parameters

73module("*").function(@1)?,

74kernel.function(@1)?

75%:

76// Inject a fault in the function return value

77module("*").function(@1).return?,

78kernel.function(@1).return?

79%)

80{

81start_injection = 0;

82if(gettimeofday_s () >=start_time+wait_time &&

83total_injections >0)

84{

85start_injection = 1;

86}

87
88injected = 0;

89
90injected = inject(module_start_addr , module_end_addr ,

91reject_start_addr , reject_end_addr ,

92inject_param , bitmask ,

93start_injection ,

94inj_func_addr_start , inj_func_addr_end)

95
96if(start_injection && injected) {

97total_injections --

98printf("%d\n", gettimeofday_ns ());

99
100// Uncomment this to log through syslogd

101// printk_warning (" INJECTOR", gettimeofday_ns ());

102}
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103}

Listing A.2: SystemTap script for monitoring of functions imported by a module
(calls from module.stp).

1/*

2Script name: calls_from_module.stp

3Version: 1.0.0

4Description: Utility for tracing kernel functions

5called by a module

6
7Usage:

8$ stap calls_from_module.stp -g -I DIR_WITH_LIB_STP

9*/

10
11/*

12start_addr and end_addr are the initial and final

13addresses of the TEXT segment of the monitored

14module; they are available in:

15/sys/module/MODULENAME/sections /.text

16/sys/module/MODULENAME/sections /.exit.text

17*/

18
19/*

20sample addresses of the ahci module

21for the vanilla kernel compiled by

22ourself

23*/

24global start_addr = 0xf883e000

25global end_addr = 0xf883fa9c

26
27probe callerprobe {

28
29func_name = probefunc ();

30func_start = get_func_addr_start(func_name);

31func_end = get_func_addr_end(func_name);

32
33if(func_start ==0 || func_end ==0) {

34next;

35}

36

154



A. Scripts for kernel monitoring and fault injection

37found = check_if_called_by_module(start_addr ,end_addr ,

38func_start ,func_end);

39
40if(found) {

41print(probefunc ()."\n");

42}

43
44}

45
46
47probe callerprobe +=

48/*

49The functions to monitor have to be singularly

50defined there (kernel functions are too many to be

51all monitored); for example , to monitor all

52functions in the sd_mod and scsi_mod modules

53called by the target module (e.g. ahci):

54
55module (" sd_mod ").function ("*"),

56module (" scsi_mod ").function ("*"),

57...

58
59To monitor all functions exported by the kernel

60and used within the module:

61
62kernel.function (" printk ")?,

63kernel.function (" memcpy ")?,

64kernel.function (" kfree")?,

65...

66*/

67{}

Listing A.3: SystemTap script for monitoring of functions exported by a module
(calls to module.stp).

1/*

2Script name: calls_to_module.stp

3Version: 1.0.0

4Description: Utility for tracing functions of

5a module called by the rest of the kernel

6
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7Usage:

8$ stap calls_to_module.stp -g -I DIR_WITH_LIB_STP

9*/

10
11/*

12start_addr and end_addr are the initial and final

13addresses of the TEXT segment of the monitored

14module; they are available in:

15/sys/module/MODULENAME/sections /.text

16/sys/module/MODULENAME/sections /.exit.text

17*/

18
19/*

20sample addresses of the ahci module

21for the vanilla kernel compiled by

22ourself

23*/

24global start_addr = 0xf883e000

25global end_addr = 0xf883fa9c

26
27probe module("ahci").function("*") {

28
29func_name = probefunc ();

30func_start = get_func_addr_start(func_name);

31func_end = get_func_addr_end(func_name);

32
33if(func_start ==0 || func_end ==0) {

34next;

35}

36
37reject = check_if_called_by_kernel(start_addr , end_addr ,

38func_start , func_end);

39
40if(reject) {

41print(probefunc ()."\n");

42}

43}

Listing A.4: A tapset with auxiliary functions (lib.stp).

1/*
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2Script name: lib.stp

3Version: 1.0.0

4Description: Tapset with auxiliary functions

5for kernel tracing and fault injection

6
7Usage: automatically included by other scripts

8*/

9
10%{

11#include "sym.h"

12%}

13
14/* Functions to obtain the initial and final address

15of a function defined in the kernel or in a module */

16
17function __get_func_addr_start:long (func_name:string)

18%{

19/* The function ’s code start address is obtained

20from the SystemTap symbol table build during

21symbols resolution for probe registration

22(see runtime/sym.c SystemTap file) */

23
24int i;

25for(i=0; i<_stp_num_modules; i++) {

26struct _stp_symbol *s = _stp_modules[i]->symbols;

27unsigned num = _stp_modules[i]->num_symbols;

28
29while (num --) {

30if (strcmp(THIS ->func_name , s->symbol) == 0) {

31THIS ->__retvalue = s->addr;

32return;

33}

34
35s++;

36}

37}

38
39THIS ->__retvalue = 0;

40%}

41
42function __get_func_addr_end:long (func_name:string)
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43%{

44/* The function ’s code end address is estimated

45by using the start address of the following

46function in the SystemTap symbol table

47(see runtime/sym.c SystemTap file) */

48
49int i;

50for(i=0; i<_stp_num_modules; i++) {

51struct _stp_symbol *s = _stp_modules[i]->symbols;

52unsigned num = _stp_modules[i]->num_symbols;

53
54while (num --) {

55if (strcmp(THIS ->func_name , s->symbol) == 0) {

56THIS ->__retvalue = (s+1) ->addr;

57return;

58}

59
60s++;

61}

62}

63
64THIS ->__retvalue = 0;

65%}

66
67/*

68Function for error injection in the kernel; TRUE is

69returned if the current function is called by a

70function in the range

71
72[module_start_addr , module_end_addr]

73
74and NOT in the range

75
76[reject_start_addr , reject_end_addr]

77
78If start_injection is TRUE , the frame stack is

79inspected but a fault is not injected , even if all

80other conditions hold. Bitmask is an integer value

81representing the bit -mask used for bit -flip (it is

82XOR -ed with the actual value). Inject_param is an

83integer representing the position of the parameter
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84in the function ’s signature (0 for the return value).

85The current function ’s code is in the addresses

86
87[func_addr_start , func_addr_end]

88
89*/

90
91function inject:long (module_start_addr:long , module_end_addr

↪→ :long , reject_start_addr:long , reject_end_addr:long ,

↪→ inject_param:long , bitmask:long , start_injection:long ,

↪→ func_addr_start:long , func_addr_end:long)

92%{

93
94/* see print_context_stack () in arch/i386/kernel/traps.c

95for details about stack inspection in the kernel */

96
97unsigned long ebp = CONTEXT ->regs ->ebp;

98unsigned long *stack = &(CONTEXT ->regs ->esp);

99
100unsigned long addr = CONTEXT ->regs ->eip;

101
102/* the stack base address is the THREAD_SIZE -aligned

103address (THREAD_SIZE is 4k or 8k) following the

104current stack pointer */

105unsigned long base_stack_address =

106(( unsigned long)stack & (~( THREAD_SIZE - 1)));

107
108/* true if the address belongs to the targeted module

109text segment */

110bool found = false;

111
112/* true if the address is in the rejected range */

113bool reject = false;

114
115/* maximum stack depth to inspect */

116unsigned int max_depth = 15;

117unsigned int depth = 0;

118
119unsigned long *stack_top = 0;

120
121unsigned long *param_addr;
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122
123bool ok;

124
125if(THIS ->inject_param ==0) {

126
127/* the return address of the current frame context

128(works only for return probes at the time of

129writing - systemtap snapshot 20070623) */

130unsigned long return_addr =

131(unsigned long)CONTEXT ->pi->ret_addr;

132
133/* we are in the return probe handler */

134
135if(return_addr >=THIS ->module_start_addr &&

136return_addr <THIS ->module_end_addr)

137{

138found = true;

139}

140
141if(return_addr >=THIS ->reject_start_addr &&

142return_addr <THIS ->reject_start_addr)

143{

144reject = true;

145}

146
147} else {

148
149#ifdef CONFIG_FRAME_POINTER

150
151while ( ebp >= base_stack_address

152&& ebp <= base_stack_address+THREAD_SIZE -3

153&& depth <max_depth)

154{

155
156unsigned long new_ebp;

157
158if( addr >=THIS ->func_addr_start

159&& addr <=THIS ->func_addr_end)

160{

161/*

162Check if the return address of the
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163current stack frame belong to the

164module ’s executable addresses

165*/

166
167addr = *( unsigned long *)(ebp + 4);

168
169if( addr >=THIS ->module_start_addr

170&& addr <THIS ->module_end_addr)

171{

172stack_top = (unsigned long *)(ebp + 8);

173found = true;

174}

175
176if( addr >=THIS ->reject_start_addr

177&& addr <THIS ->reject_end_addr)

178{

179reject = true;

180}

181
182break;

183}

184
185/* The return address of the current stack frame */

186addr = *( unsigned long *)(ebp + 4);

187
188/*

189break if the next ebp address is lower than

190the current one (because previous stack frames

191are located at increasing addresses)

192*/

193
194new_ebp = *( unsigned long *)ebp;

195if (new_ebp <= ebp)

196break;

197
198ebp = new_ebp;

199
200depth ++;

201
202}

203
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204#else

205#error Please , compile the kernel with the

↪→ CONFIG_FRAME_POINTER option enabled

206#endif

207
208}

209
210ok = found && !reject;

211
212THIS ->__retvalue = ok;

213
214if(THIS ->start_injection ==0) {

215return;

216}

217
218if(ok) {

219
220/*

221if inject_param >0 and the targeted module has called

222the targeted function , inject a fault in the parameter;

223if inject_param ==0 and a function of the targeted

224module is returning , inject a fault in the return value

225*/

226
227
228switch(THIS ->inject_param) {

229case 0:

230/*

231we assume as calling convention that the

232return value (if any) is provided through

233%eax for 32 bit types (e.g. int)

234*/

235CONTEXT ->regs ->eax =

236CONTEXT ->regs ->eax ^ THIS ->bitmask;

237break;

238
239/*

240If the targeted parameter is the first , the

241second or the third , it is stored in a register

242before the call (in order , %eax , %edx or %ecx);

243we assume the kernel was compiled with the
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244-mregparam =3 option , that sets subroutines ’

245calling convention

246*/

247case 1:

248CONTEXT ->regs ->eax =

249CONTEXT ->regs ->eax ^ THIS ->bitmask;

250break;

251case 2:

252CONTEXT ->regs ->edx =

253CONTEXT ->regs ->edx ^ THIS ->bitmask;

254break;

255case 3:

256CONTEXT ->regs ->ecx =

257CONTEXT ->regs ->ecx ^ THIS ->bitmask;

258break;

259
260/*

261The caller has pushed the targeted parameter

262on the stack (the last parameter is the first

263to be pushed , and the fourth parameter is the

264last)

265*/

266default:

267/*

268we evaluate the address of the top element of

269the stack just before the call of the targeted

270function; we use the address of the return

271address found in the previous code when scanning

272the call frames on the stack (stack_top):

273function ’s parameters were push just before

274the return address we have found

275*/

276param_addr =

277stack_top + 4*(THIS ->inject_param -3) -4;

278
279*param_addr = *param_addr ^ THIS ->bitmask;

280
281break;

282}

283
284}
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285
286%}

287
288
289/* static variables for caching functions ’

290address ranges */

291global __func_addr_start

292global __func_addr_end

293global __func_inline_excluded

294
295/* get the initial address of the function ’s code */

296function get_func_addr_start:long (func_name:string) {

297if(__func_inline_excluded[func_name ]==1) {

298return 0;

299}

300
301func_start = __func_addr_start[func_name ];

302
303if(func_start ==0) {

304func_start = __get_func_addr_start(func_name);

305
306if(func_start ==0) {

307__func_inline_excluded[func_name] = 1;

308return 0;

309} else {

310__func_addr_start[func_name] = func_start;

311}

312}

313
314return func_start

315}

316
317/* get the final address of the function ’s code */

318function get_func_addr_end:long (func_name:string) {

319if(__func_inline_excluded[func_name ]==1) {

320return 0;

321}

322
323func_end = __func_addr_end[func_name ];

324
325if(func_end ==0) {

164



A. Scripts for kernel monitoring and fault injection

326func_end = __get_func_addr_end(func_name);

327
328if(func_end ==0) {

329__func_inline_excluded[func_name] = 1;

330return 0;

331} else {

332__func_addr_end[func_name] = func_end;

333}

334}

335
336return func_end

337}

338
339/* check if the current function is a kernel function

340called by the specified module */

341function check_if_called_by_module:long (start_addr:long ,

↪→ end_addr:long , func_start:long , func_end:long)

342{

343return inject(start_addr , end_addr ,

3440, 0, // do not reject

3451, 0, 0, // no injection

346func_start , func_end

347);

348}

349
350/* check if the current function is a function of the

351specified module called by the kernel */

352function check_if_called_by_kernel:long (start_addr:long ,

↪→ end_addr:long , func_start:long , func_end:long)

353{

354return inject(0, 4294967295 , // any caller function

355start_addr , end_addr ,

3561, 0, 0, // no injection

357func_start , func_end

358);

359}

360
361/* print in syslogd log files

362(e.g. /var/log/messages , /dev/console) */

363function printk_warning(prefix:string , msg:string) %{

364printk(KERN_WARNING "%s %s\n", THIS ->prefix , THIS ->msg);
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365%}

Listing A.5: SystemTap script for measurement of logging latency by the Syslogd
daemon (syslog-write.stp).

1/*

2Script name: syslog -write.stp

3Version: 1.0.0

4Description: Utility for measurement of syslogd

5logging latency

6
7Usage:

8$ stap syslog -write.stp -x ‘pidof syslogd ‘

9*/

10
11probe syscall.writev.return , syscall.write.return {

12if(pid()== target ()){

13printf("%d\n", gettimeofday_ns ());

14}

15}

Listing A.6: SystemTap script for tracing I/O activities of network and disk
devices drivers (trace.stp).

1/*

2Script name: trace.stp

3Version: 1.0.0

4Description: Utility for tracing kernel I/O events

5
6Usage:

7$ stap trace.stp -bMv

8*/

9
10probe begin

11{

12stoptrace_fork = 1

13stoptrace_exec = 1

14}

15
16probe addevent.scsi.iodone {}

17probe addevent.netdev.receive {}
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18probe addevent.netdev.transmit {}

A.2 Implementation of the failure detector

The proposed algorithm for failure detection was implemented with the Sys-

temTap language (see § 5.3), to be experimentally evaluated through the

dependability benchmark for logging mechanisms which was defined in sec-

tion 3.3.1.

The failure detector consists of 3 probes to monitor packets transmission

and reception, and disk block requests (reads and writes are discriminated

by inspection of a flag); a timer probe is defined for the periodic evaluation

of the inequality (4.13). When the timer activates the probe, the statistical

mean and the standard deviation for the current sample are estimated from

the previous samples, and a log entry is produced (it is sent to the standard

output of the stap process, or to syslogd through the printk() kernel

function), which describes the throughput variation (e.g. what event caused

the variation, the estimated values, the current sample, and so on). The test

on the current sample is repeated for each one of the 4 monitored I/O events

(packet send/receive, block read/write).

Because of the fact we do not use floating point arithmetic in kernel

code (we should explicitly access to the floating point registers of the CPU

and manage interrupts caused by operations; moreover, the floating point

arithmetic requires more CPU cycles), the failure detector does not directly

implement (4.13), (4.14), and (4.15). Instead, the following expressions are

implemented, by only using integer arithmetic:

(X(ti)−mX)2 − k2σ2
X > 0 (A.1)

mX =

⌊∑i−1
k=i−N xk

N

⌋
(A.2)

σ2
X =

⌊∑i−1
k=i−N(xk −mX)2

N − 1

⌋
(A.3)

167



A. Scripts for kernel monitoring and fault injection

At the time of writing, only integer values for the k parameter are sup-

ported. Nevertheless, the (A.1) can be rearranged by multiplying the left

member with a constant factor, in order to support non-integer values of k

with arbitrary precision. For example, if the expression is multiplied for 100,

the second term of the subtraction can be written as 100·k2σ2
X = (10·k)2σ2

X =

k
2
σ2

X , therefore if the desired value of k is 6.5, we will assign the value 65 to

the variable k.

The sampled throughput values are stored in a circular buffer (figure A.2):

the current sample location is pointed by an integer index, and previous

N samples are stored in previous locations (modulo N+1). After that the

periodic processing of samples is completed, the pointer is increased (modulo

N+1), the pointed location is zeroed, and all probes monitoring I/O events

will increase the value of the circular buffer at that location.

...k N−1 N0 1 ...

current
sample

i−k+1 i−2 i−1 i i−N ...... i−k−2 i−k−1i−k

Figure A.2: The circular buffer data structure for throughput samples.

In the following, the source code of the described failure detector is re-

ported.

Listing A.7: SystemTap script for failure detection (detect.stp).

1/*

2Script name: detect.stp

3Version: 1.0.0

4Description: Utility for failure detection

5
6Usage:

7$ stap detect.stp -g -DMAXACTION =100000 \

8<net interfaces list > <disks list > <sampling_time >

9
10The first and second parameter are semicolon -separated
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11lists containing , respectively , the network interfaces

12and disk devices to monitor; the throughput of each

13monitored device is periodically sampled , and the

14number of periods between consecutive samples should

15be specified in the lists for each device. The third

16parameter is the length of a single period in

17milliseconds. Each item in the lists contains:

18
19* The device identifier (net interface name or

20disk major and minor number);

21* The number of periods between samples for input

22data throughput (read blocks for disk , input

23packets for net);

24* The number of periods between samples for output

25data throughput (written blocks for disk , output

26packets for net);

27* The number N of previous samples , for input data ,

28compared to the current sample by the detection

29algorithm;

30* The number N of previous samples , for output

31data;

32* The number k, for input data , which is multiplied

33with the standard deviation to obtain a range

34around the mean of the N previous samples; the

35sampled throughput should exceed this range only

36in the case of failures;

37* The number k, for output data.

38
39Both N and k should be integer numbers.

40
41In the following example , the network interfaces eth0

42and eth1 are monitored with a sample period (both input

43and output) of 100 ms (1 period of 100 ms), and the

44disk devices sda and hda with a sample period (both

45input and output) of 500 ms (5 periods of 100 ms).

46The N parameter is 10 for each device (both input and

47output), and the k parameter is 3 for the network

48interfaces and 4 for the disks (both input and output).

49
50$ detect.stp "eth0 ,1,1,10,10,3,3;eth1 ,1,1,10,10,3,3" \

51"sda ,5,5,10,10,4,4;hda ,5,5,10,10,4,4" \
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52100

53
54To only monitor the eth0 network interface:

55
56$ detect.stp "eth0 ,1,1,10,10,3,3" "" 100

57*/

58
59
60/*

61the list of network devices

62*/

63global net_devices

64
65/*

66the list of disk devices

67*/

68global disk_devices

69
70/*

71the number of periods between samples for each device

72*/

73global samples

74global past_samples

75
76/*

77bidimensional matrixes containing circular buffers

78of size N+1

79*/

80global counters

81
82/*

83arrays of logical pointers to each current entry

84in the circular buffers in counters

85*/

86global index

87
88/*

89"N" contains the number of previous samples for each

90device to use in order to evaluate the mean and

91variance of processed blocks/packets (the N parameter)

92*/
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93global N

94
95/*

96"k" contains the k parameter for each monitored device

97*/

98global k

99
100/*

101The minimum number of events needed to evaluate

102statistics for the drivers; if the number of

103events is lower than "threeshold", a warning can

104not be produced

105*/

106global threeshold = 100

107
108
109global period = $3

110global input_index = 1

111global output_index = 2

112
113global frequency

114
115/*

116Temporary arrays for lists parsing

117*/

118global net_array

119global disk_array

120
121
122global RW_MASK

123
124
125probe begin {

126parse_lists ()

127
128foreach(dev in net_devices) {

129for(i=0; i<N[dev ,input_index ]; i++) {

130counters[dev ,input_index ,i] = 0

131index[dev ,input_index] = 0

132}

133
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134for(i=0; i<N[dev ,output_index ]; i++) {

135counters[dev ,output_index ,i] = 0

136index[dev ,output_index] = 0

137}

138}

139
140foreach(dev in disk_devices) {

141for(i=0; i<N[dev ,input_index ]; i++) {

142counters[dev ,input_index ,i] = 0

143index[dev ,input_index] = 0

144}

145
146for(i=0; i<N[dev ,output_index ]; i++) {

147counters[dev ,output_index ,i] = 0

148index[dev ,output_index] = 0

149}

150}

151
152frequency = 1000 / period

153
154RW_MASK = get_rw_mask ();

155}

156
157
158
159probe timer.ms($3) {

160
161foreach ([dev , inout] in samples) {

162
163numsamples = samples[dev , inout]

164
165past_samples[dev , inout] =

166(past_samples[dev , inout] + 1) % numsamples

167
168if(past_samples[dev ,inout ]!=0) {

169continue

170}

171
172idx = index[dev ,inout]

173count = counters[dev ,inout ,idx]

174numperiods = N[dev ,inout]
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175bufsize = numperiods + 1

176
177/*

178the throughput for the current sample

179*/

180throughputshort = count * frequency / numsamples

181
182/*

183the throughput for the previous N samples

184*/

185throughputlong = 0;

186
187for(j=0; j<numperiods; j++) {

188throughputlong +=

189counters[dev , inout , (idx +1+j)%bufsize]

190}

191
192total = throughputlong + counters[dev , inout , idx]

193
194throughputlong =

195throughputlong*frequency /( numsamples*numperiods)

196
197/*

198variance evaluated on the previous N samples

199*/

200var = 0

201
202for(j=0; j<numperiods; j++) {

203count = counters[dev , inout , (idx+1+j)%bufsize]

204sample = (count * frequency / numsamples)

205- throughputlong

206
207var += sample*sample

208}

209
210var = var / (numperiods -1)

211
212k_i = k[dev ,inout]

213
214mean_diff = throughputshort - throughputlong

215
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216eval = mean_diff*mean_diff - k_i*k_i*var

217
218if(total >= threeshold) {

219
220if(eval > 0) {

221
222source = ""

223warn_msg = ""

224
225if(net_devices[dev ]==1) {

226source = "network_card_"

227} else if(disk_devices[dev ]==1) {

228source = "disk_"

229}

230
231if(inout== input_index) {

232source = source."input"

233} else {

234source = source."output"

235}

236
237if(mean_diff >= 0) {

238warn_msg = "throughput_peak"

239} else {

240warn_msg = "throughput_loss"

241}

242
243log_entry = sprintf("%d %s:%s %s\tthshort =%d,

↪→ thlong =%d, var=%d, k=%d", gettimeofday_ns (),

↪→ source , dev , warn_msg , throughputshort ,

↪→ throughputlong , var , k_i);

244
245print(log_entry."\n");

246
247// Uncomment this to log through syslogd

248// printk_warning (" DETECTOR", log_entry);

249}

250}

251
252/*

253Reset the next buffer entry for the next
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254throughput sample

255*/

256counters[dev , inout , (idx+1)%bufsize] = 0

257
258/*

259Increase the current entry index

260*/

261index[dev ,inout] = (idx+1)%bufsize

262}

263}

264
265function printk_warning(prefix:string , msg:string) %{

266printk(KERN_WARNING "%s %s\n", THIS ->prefix , THIS ->msg);

267%}

268
269probe netdev.transmit {

270if(net_devices[dev_name ]==1) {

271idx = index[dev_name , output_index]

272counters[dev_name , output_index , idx]++

273}

274}

275
276probe netdev.receive {

277if(net_devices[dev_name ]==1) {

278idx = index[dev_name , input_index]

279counters[dev_name , input_index , idx]++

280}

281}

282
283probe ioscheduler.elv_completed_request {

284
285if($rq !=0 && $rq ->rq_disk !=0) {

286
287/*

288see struct request in include/linux/blkdev.h

289and include/linux/genhd.h

290*/

291disk_name = kernel_string($rq ->rq_disk ->disk_name)

292
293if(disk_devices[disk_name ]==1) {

294
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295if(req_flags & RW_MASK) {

296// write request

297idx = index[disk_name , output_index]

298counters[disk_name , output_index ,idx ]++

299} else {

300// read request

301idx = index[disk_name , input_index]

302counters[disk_name , input_index ,idx ]++

303}

304
305}

306
307}

308
309}

310
311/*

312The REQ_RW mask is defined in

313include/linux/blkdev.h

314*/

315
316%{

317#include <linux/blkdev.h>

318%}

319
320function get_rw_mask:long() %{

321THIS ->__retvalue = REQ_RW;

322%}

323
324
325function parse_lists () {

326net_list = @1

327disk_list = @2

328
329delete net_array

330delete disk_array

331
332if(net_list =="" && disk_list =="") {

333error("There must be at least one device in the net

↪→ interfaces list or disks list")

334}
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335
336// Parse the network interface list

337i = 0

338
339net_item = tokenize(net_list ,";")

340
341if(net_list =="") {

342/*

343do nothing; it means that only

344disk devices were specified by

345the user

346*/

347} else if(net_item =="") {

348error("The first parameter is not a valid list of

↪→ network interfaces")

349} else {

350
351while(net_item != "") {

352net_array[i] = net_item

353i++

354
355net_item = tokenize("",";")

356
357}

358
359for(j=0; j<i; j++) {

360if_name = tokenize(net_array[j],",")

361
362sample_periods_in = tokenize("",",")

363sample_periods_out = tokenize("",",")

364
365numperiods_in = tokenize("",",")

366numperiods_out = tokenize("",",")

367
368k_in = tokenize("",",")

369k_out = tokenize("",",")

370
371if(if_name =="" || sample_periods_in =="" ||

372sample_periods_out =="" ||

373numperiods_in =="" || numperiods_out =="" ||

374k_in=="" || k_out=="" ) {
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375error("The first parameter is not a valid list of

↪→ network interfaces")

376}

377
378net_devices[if_name] = 1

379
380samples[if_name , input_index] =

381strtol(sample_periods_in ,10)

382samples[if_name , output_index] =

383strtol(sample_periods_out ,10)

384
385past_samples[if_name , input_index] = 0

386past_samples[if_name , output_index] = 0

387
388N[if_name , input_index] =

389strtol(numperiods_in ,10)

390N[if_name , output_index] =

391strtol(numperiods_out ,10)

392
393k[if_name , input_index] = strtol(k_in ,10)

394k[if_name , output_index] = strtol(k_out ,10)

395}

396
397}

398
399// Parse the disk devices list

400i = 0;

401
402disk_item = tokenize(disk_list ,";")

403
404if(disk_list =="") {

405/*

406do nothing; it means that only

407net devices were specified by

408the user

409*/

410} else if(disk_item =="") {

411error("The second parameter is not a valid list of disk

↪→ devices")

412} else {

413
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414while(disk_item != "") {

415disk_array[i] = disk_item

416i++

417
418disk_item = tokenize("",";")

419
420}

421
422for(j=0; j<i; j++) {

423disk_name = tokenize(disk_array[j],",")

424
425sample_periods_in = tokenize("",",")

426sample_periods_out = tokenize("",",")

427
428numperiods_in = tokenize("",",")

429numperiods_out = tokenize("",",")

430
431k_in = tokenize("",",")

432k_out = tokenize("",",")

433
434if(disk_name =="" || sample_periods_in =="" ||

435sample_periods_out =="" ||

436numperiods_in =="" || numperiods_out =="" ||

437k_in=="" || k_out=="" ) {

438error("The second parameter is not a valid list

↪→ of disk devices")

439}

440
441disk_devices[disk_name] = 1

442
443samples[disk_name , input_index] =

444strtol(sample_periods_in ,10)

445samples[disk_name , output_index] =

446strtol(sample_periods_out ,10)

447
448past_samples[disk_name , input_index] = 0

449past_samples[disk_name , output_index] = 0

450
451N[disk_name , input_index] =

452strtol(numperiods_in ,10)

453N[disk_name , output_index] =
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454strtol(numperiods_out ,10)

455
456k[disk_name , input_index] = strtol(k_in ,10)

457k[disk_name , output_index] = strtol(k_out ,10)

458}

459
460}

461}
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